Answer:
Explanation:
The formula for gravitational potential energy is
Ep = m · g · h Assuming that the acceleration is g = 10m/s²
Ep = 45.4 · 10 · 21.9 = 9,942.6 J
God is with you!!!
Alright here the answer to number 2
Answer:
The correct answer is Dean has a period greater than San
Explanation:
Kepler's third law is an application of Newton's second law where the force is the universal force of attraction for circular orbits, where it is obtained.
T² = (4π² / G M) r³
When applying this equation to our case, the planet with a greater orbit must have a greater period.
Consequently Dean must have a period greater than San which has the smallest orbit
The correct answer is Dean has a period greater than San
Answer:
I would hope they can change this question
The answer is Rh = 135 cm^3 and B = 0.05185 wh/m^2
Explanation:
Resitivity of silicon = 0.1
thickness = 100um
so, I = ma
Required to find out concentration of electron , we know that
Rh = up
By putting in the values,
Rh = 1350 x 0.1
Rh = 135 cm^3
Now consider,
Rh = 1 / Rh.q
= 1 / Rh . q
= 1 / 135 x1.609 x10^-19
= 4.6037 x 10^16 / cm^3
Vh = BIRh / w
B = Vh w/ IRh
B = -70 x10^-6 x 100 x10^-6 / 1x 10^-3 x 135 x 10^-6
B = 0.05185 wh / m^2