Answer:
Time, t = 12 minutes
Explanation:
It is given that,
A cyclist rides 16.0 km east, then 8.0 km west, then 8.0 km east, then 32.0 km west, and finally 11.2 km east. Let west direction is negative and east direction is positive. The displacement of the cyclist is :

d = 4800 m
Let us assumed that the average speed of the cyclist is, v = 24 km/h = 6.66667 m/s
Let t is the time taken by the cyclist to complete the trip. The velocity of an object is given by :



t = 719.99 seconds
t = 720 seconds
or
t = 12 minutes
So, the time taken by the cyclist to complete the trip is 12 minutes. Yes, the time taken by the cyclist to complete the trip is reasonable. Hence, this is the required solution.
Answer:
) pulls the ladder in the direction opposite
Explanation:
This is in line with lenz law that states that the magnetic field induced in a conductor act to oppose the magnetic field that produced it
Answer:
Tension, T = 87.63 N
Explanation:
Given that,
Mass of the object, m = 6.9 kg
The string is acting in the upward direction, a = 2.9 m/s²
Acceleration due to gravity, g = 9.8 m/s²
As the lift is accelerating upwards, it means the net force acting on it is given by :
T = m(a+g)
= 6.9 (2.9+9.8)
= 6.9(2.7)
= 87.63 N
So, the tension in the string is 87.63 N.
Answer:
a. Decreases
b. Increases
c. Remains the same
d. Increases
Explanation:
a. Capacitance is given by c= Ak€/d
where A is conductivity plate with Area
K is a constant
€ is dielectric with permittivity.
d is the distance
b. Potential difference is given by
V = Ed, since, the electric field remains the
same, the potential diterence also increases with increase in distance.
Since the capacitance depends upon the distance, and all the other factors are kept constant, the capacitance decreases.
c. Electric field remains the same because charge on the
plate remains the same.
d. since electric field remains the same and capacitance decreases, the energy increases.
E= 1/2c * Q^2