Answer:
The separation distance between the parallel planes of an atom is hc/2sinθ(EK - EL)
Explanation:
The relationship between energy and wavelength is expressed below:
E = hc/λ
λ = hc/EK - EL
Considering the condition of Bragg's law:
2dsinθ = mλ
For the first order Bragg's law of reflection:
2dsinθ = (1)λ
2dsinθ = hc/EK - EL
d = hc/2sinθ(EK - EL)
Where 'd' is the separation distance between the parallel planes of an atom, 'h' is the Planck's constant, 'c' is the velocity of light, θ is the angle of reflection, 'EK' is the energy of the K shell and 'EL' is the energy of the K shell.
Therefore, the separation distance between the parallel planes of an atom is hc/2sinθ(EK - EL)
The choices can be found elsewhere and as follows:
a. <span>Alpha Centauri </span>
<span>c. </span><span>T-tauri </span>
<span>b. </span><span>The Big Bang </span>
<span>d. </span><span>Nebular
</span>
I believe the correct answer from the choices listed above is option D. <span>Strong solar winds blew dust and gas out of the solar system during Nebular phase. This seems to be the most logical option from the choices. Hope this helps. Have a nice day.</span>
Answer:
The answer is 631.157
Explanation:
The question requested that the answer to the subtraction of 26.543 from 657.70 must be written using significant figures.
Here are a few tips about how to Identify significant figures.
1) It should be noted that <u>the number "0" is what is usually (but not always) affected</u> while trying to identify significant figures. Hence, <u>all other numbers/digits are always significant</u>. For example, 26.543 has five significant figures.
2) The zeros found between these "other numbers/digits" are also significant. For example, 2202 has four significant figures.
3) In the case of a decimal, the tailing zeros or the final zero is also significant. 657.70 and 657.07 have five significant figures.
Now, back to the question
657.70 - 26.543 = 631.157.
Our final answer does not have a zero, hence all the digits (six) are significant.
Answer:
22m/s
Explanation:
To find the velocity we employ the equation of free fall: v²=u²+2gh
where u is initial velocity, g is acceleration due to gravity h is the height, v is the velocity the moment it hits the ground, taking the direction towards gravity as positive.
Substituting for the values in the question we get:
v²=2×9.8m/s²×25m
v²=490m²/s²
v=22.14m/s which can be approximated to 22m/s
Answer
The dedicated graphics card is used when performing hardware-intensive tasks so as to ensure efficiency and balanced performance. However, it uses more power and thus produces more heat. When the cooling system is not sufficient or the room is not well ventilated, your PC begins to overheat while playing games. Explanation: How does the second law of thermodynamics relate to the direction of heat flow? Heat of itself never flows from a cold object to a hot object. ... The second law expresses the maximum efficiency of a heat engine in terms of hot and cold temperatures. one of these answers i am not sure