Answer:
A and C
Step-by-step explanation:
We are given the following quadratic equation

The vertex is the maximum/minimum point of the quadratic equation.
The x-coordinate of the vertex is given by

Comparing the given equation with the general form of the quadratic equation, the coefficients are
a = 2
b = 7
c = -10

The y-coordinate of the vertex is given by

This means that we have a minimum point.
Therefore, the minimum point of the given quadratic equation is
Answer:
(f⁻¹)'(b) = 1/f'(f⁻¹(b)) = 1/f'(a)
Step-by-step explanation:
The function f⁻¹(x) is the reflection of the function f(x) across the line y=x. Every point (a, b) that is on the graph of f(x) is reflected to be a point (b, a) on the graph of f⁻¹(x).
Any line with slope m reflected across the line y=x will have slope 1/m. (x and y are interchanged, so m=∆y/∆x becomes ∆x/∆y=1/m) Since f'(x) is the slope of the tangent line at (x, f(x)), 1/f'(x) will be the slope of the tangent line at (f(x), x).
Replacing x with f⁻¹(x) in the above relation, you get ...
... (f⁻¹)'(x) = 1/f'(f⁻¹(x)) will be the slope at (x, f⁻¹(x))
Putting your given values in this relation, you get
... (f⁻¹)'(b) = 1/f'(f⁻¹(b)) = 1/f'(a)
Answer:
60%
Step-by-step explanation:
86.4 divided by 144 is 0.60 which is 60%