1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
____ [38]
3 years ago
5

What type of fuel does a 2 cycle engine use

Engineering
1 answer:
Usimov [2.4K]3 years ago
7 0

Answer:

if it's for outside it uses a mixture of oil and gas

You might be interested in
The state of plane strain on an element is:
balu736 [363]

Answer:

a. ε₁=-0.000317

   ε₂=0.000017

θ₁= -13.28° and  θ₂=76.72°  

b. maximum in-plane shear strain =3.335 *10^-4

Associated average normal strain ε(avg) =150 *10^-6

θ = 31.71 or -58.29

Explanation:

\epsilon _{1,2} =\frac{\epsilon_x + \epsilon_y}{2}  \pm \sqrt{(\frac{\epsilon_x + \epsilon_y}{2} )^2 + (\frac{\gamma_xy}{2})^2} \\\\\epsilon _{1,2} =\frac{-300 \times 10^{-6} + 0}{2}  \pm \sqrt{(\frac{-300 \times 10^{-6}+ 0}{2}) ^2 + (\frac{150 \times 10^-6}{2})^2}\\\\\epsilon _{1,2} = -150 \times 10^{-6}  \pm 1.67 \times 10^{-4}

ε₁=-0.000317

ε₂=0.000017

To determine the orientation of ε₁ and ε₂

tan 2 \theta_p = \frac{\gamma_xy}{\epsilon_x - \epsilon_y} \\\\tan 2 \theta_p = \frac{150 \times 10^{-6}}{-300 \times 10^{-6}-\ 0}\\\\tan 2 \theta_p = -0.5

θ= -13.28° and  76.72°

To determine the direction of ε₁ and ε₂

\epsilon _{x' }=\frac{\epsilon_x + \epsilon_y}{2}  + \frac{\epsilon_x -\epsilon_y}{2} cos2\theta  + \frac{\gamma_xy}{2}sin2\theta \\\\\epsilon _{x'} =\frac{-300 \times 10^{-6}+ \ 0}{2}  + \frac{-300 \times 10^{-6} -\ 0}{2} cos(-26.56)  + \frac{150 \times 10^{-6}}{2}sin(-26.56)\\\\

=-0.000284 -0.0000335 = -0.000317 =ε₁

Therefore θ₁= -13.28° and  θ₂=76.72°  

b. maximum in-plane shear strain

\gamma_{max \ in \ plane} =2\sqrt{(\frac{\epsilon_x + \epsilon_y}{2} )^2 + (\frac{\gamma_xy}{2})^2} \\\\\gamma_{max \ in \ plane} = 2\sqrt{(\frac{-300 *10^{-6} + 0}{2} )^2 + (\frac{150 *10^{-6}}{2})^2}

=3.335 *10^-4

\epsilon_{avg} =(\frac{\epsilon_x + \epsilon_y}{2} )

ε(avg) =150 *10^-6

orientation of γmax

tan 2 \theta_s = \frac{-(\epsilon_x - \epsilon_y)}{\gamma_xy} \\\\tan 2 \theta_s = \frac{-(-300*10^{-6} - 0)}{150*10^{-6}}

θ = 31.71 or -58.29

To determine the direction of γmax

\gamma _{x'y' }=  - \frac{\epsilon_x -\epsilon_y}{2} sin2\theta  + \frac{\gamma_xy}{2}cos2\theta \\\\\gamma _{x'y' }=  - \frac{-300*10^{-6} - \ 0}{2} sin(63.42)  + \frac{150*10^{-6}}{2}cos(63.42)

= 1.67 *10^-4

4 0
4 years ago
Which one is suitable for industries petrol engine or diesel engine and why?
klio [65]

Answer:

diesel engine

Explanation:

because diesel is stronger than petrol

3 0
3 years ago
Read 2 more answers
HfrrghhJbfrfefefft nbgyjjiutrwdgju
Tasya [4]

Answer:

hshdhriwjajaldh skshdjdywuusg

Explanation:

null

4 0
3 years ago
The given family of functions is the general solution of the differential equation on the indicated interval.Find a member of th
Alja [10]

Answer:

Explanation:

y'''+y=0---(i)

General solution

y=c_1e^o^x+c_2\cos x +c_3 \sin x\\\\\Rightarrow y=c_1+c_2 \cos x+c_3 \sin x---(ii)\\\\y(\pi)=0\\\\\Rightarrow 0=c_1+c_2\cos (\pi)+c_3\sin (\pi)\\\\\Rightarrow c_1-c_2=0\\\\c_1=c_2---(iii)

y'=-c_2\cos x+c_3\cosx\\\\y'(\pi)=2\\\\\Rightarrow2=-c_2\sin(\pi)+c_3\cos(\pi)\\\\\Rightarrow-c_2(0)+c_3(-1)=2\\\\\Rightarrow c_3=-2\\\\y''-c_2\cos x -c_3\sin x\\\\y''(\pi)=-1\\\\\Rightarrow-1=-c_2 \cos (\pi)=c_3\sin(\pi)\\\\\Rightarrow-1=c_2-0\\\\\Rightarrow c_2=-1

in equation (iii)

c_1=c_2=-1

Therefore,

\large\boxed{y=-1-\cos x-2\sin x}

5 0
3 years ago
A water pump delivers 3 hp of shaft power when operating. If the pressure differential between the outlet and the inlet of the p
Natali [406]

Answer:

Mechanical Efficiency =  83.51%

Explanation:

Given Data:

Pressure difference = ΔP=1.2 Psi

Flow rate = V=8ft^3/s\\

Power of Pump = 3 hp

Required:

Mechanical Efficiency

Solution:

We will first bring the change the units of given data into SI units.

P=1.2*6.895 = 8.274KPa\\V=8*0.00283=0.226 m^3/s\\P=3*0.746=2.238KW

Now we will find the change in energy.

Since it is mentioned in the statement that change in elevation (potential energy) and change in velocity (Kinetic Energy) are negligible.

Thus change in energy is

=(Mass * change in P)/density\\= \frac{M*P}{p}\\\\

As we know that Mass = Volume x density

substituting the value

Energy = Volume * density x ΔP / density

Change in energy = Volumetric flow x ΔP

Change in energy = 0.226 x 8.274 = 1.869 KW

Now mechanical efficiency = change in energy / work done by shaft

Efficiency = 1.869 / 2.238

Efficiency = 0.8351 = 83.51%

5 0
3 years ago
Other questions:
  • A thermal energy storage unit consists of a large rectangular channel, which is well insulated on its outer surface and encloses
    7·1 answer
  • How should employees talk to clients)
    9·1 answer
  • Disconnecting means shall be capable of being locked in the open position. The provisions for locking do not have to reamin in p
    14·1 answer
  • A spherical seed of 1 cm diameter is buried at a depth of 1 cm inside soil (thermal conductivity of 1 Wm-1K-1) in a sufficiently
    14·1 answer
  • When diagnosing engine noise, Technician A says a mechanical stethoscope may not be appropriate in pinpointing a squeaking drive
    14·1 answer
  • Complete the following sentence. Engineers explore biology, chemistry, and physics for use in scenarios.
    8·2 answers
  • A process consists of two steps: (1) One mole of air at T = 800 K and P = 4 bar is cooled at constant volume to T = 350 K. (2) T
    7·1 answer
  • Our rule-of-thumb for presenting final results is to round to three significant digits or four if the first digit is a one. By t
    12·1 answer
  • Choose the three questions that an engineer should ask himself or herself when identifying the need of a problem.
    6·2 answers
  • I will mark brainliest.
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!