Answer:
check online for more information
Answer:
b. 58%
Step-by-step explanation:
Calculate the area of the entire rectangle using the formula A = lw.
The lowercase "L" is for length.
"w" is for width.
The lighter square is 10 units long by 5 inches wide.
A = lw
A = (10 in)(5 in) Multiply
A = 50 in²
Calculate the area for the shaded rectangle, 7 inches by 3 inches.
A = lw
A = (7 in)(3 in) Multiply
A = 21 in²
Calculate the area for the non-shaded region by subtracting the shaded area from the total area.
50 in² - 21 in² = 29 in²
The chance that a point in the large rectangle will NOT be in the shaded region is 29/50.
Convert this fraction to decimal form by using a calculator. Divide the top number by the bottom number.
29/50 = 0.58
0.58 is in decimal form. To convert it to a percentage, multiply the number by 100.
0.58 = 58%
Therefore the probability that a point chosen inside the large rectangle is not in the shaded region is 58%.
Answer:
fsdfd
Step-by-step explanation:
Depends where. Normally it whould cost 17,500.
SOLUTION
TO DETERMINE
The degree of the polynomial
CONCEPT TO BE IMPLEMENTED
POLYNOMIAL
Polynomial is a mathematical expression consisting of variables, constants that can be combined using mathematical operations addition, subtraction, multiplication and whole number exponentiation of variables
DEGREE OF A POLYNOMIAL
Degree of a polynomial is defined as the highest power of its variable that appears with nonzero coefficient
When a polynomial has more than one variable, we need to find the degree by adding the exponents of each variable in each term.
EVALUATION
Here the given polynomial is
In the above polynomial variable is z
The highest power of its variable ( z ) that appears with nonzero coefficient is 5
Hence the degree of the polynomial is 5
FINAL ANSWER
The degree of the polynomial is 5
━━━━━━━━━━━━━━━━
Learn more from Brainly :-
1. Find the degree of 2020?
brainly.in/question/25939171
2. Write the degree of the given polynomial: 5x³+4x²+7x