Answer:
englishhhh pleasee
Explanation:
we dont understand sorry....
Answer: Even low airborne concentrations (100 ppm) of ammonia may produce rapid eye and nose irritation.
The back-work ratio much higher in the Brayton cycle than in the Rankine cycle because a gas cycle is the Brayton cycle, while a steam cycle is the Rankine cycle. Particularly, the creation of water droplets will be a constraint on the steam turbine's efficiency. Since gas has a bigger specific volume than steam, the compressor will have to work harder while using gas.
<h3>What are modern Brayton engines?</h3>
Even originally Brayton exclusively produced piston engines, modern Brayton engines are virtually invariably of the turbine variety. Brayton engines are also gas turbines.
<h3>What is the ranking cycle?</h3>
A gas cycle is the Brayton cycle, while the Ranking cycle is a steam cycle. The production of water droplets will especially decrease the steam turbine's performance. Gas-powered compressors will have to do more work since gas's specific volume is greater than steam's.
Th
To know more about Rankine cycle, visit: brainly.com/question/13040242
#SPJ4
Answer:
401.3 kg/s
Explanation:
The power plant has an efficiency of 36%. This means 64% of the heat form the source (q1) will become waste heat. Of the waste heat, 85% will be taken away by water (qw).
qw = 0.85 * q2
q2 = 0.64 * q1
p = 0.36 * q1
q1 = p /0.36
q2 = 0.64/0.36 * p
qw = 0.85 *0.64/0.36 * p
qw = 0.85 *0.64/0.36 * 600 = 907 MW
In evaporation water becomes vapor absorbing heat without going to the boiling point (similar to how sweating takes heat from the human body)
The latent heat for the vaporization of water is:
SLH = 2.26 MJ/kg
So, to dissipate 907 MW
G = qw * SLH = 907 / 2.26 = 401.3 kg/s
Staying hydrated at all times