1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
leonid [27]
4 years ago
5

A water reservoir contains 108 metric tons of water at an average elevation of 84 m. The maximum amount of electric energy that

can be generated from this water is: 8 kwh, 16 kwh, 1630 kwh, 16300 kwh or 58800 kwh.
Engineering
1 answer:
zavuch27 [327]4 years ago
8 0

Answer:

24.72 kwh

Explanation:

Electric energy=potential energy=mgz where m is mass, g is acceleration due to gravity and z is the elevation.

Substituting the given values while taking g as 9.81 and dividing by 3600 to convert to per hour we obtain

PE=(108*9.81*84)/3600=24.72 kWh

You might be interested in
Assuming the transition to turbulence for flow over a flat plate happens at a Reynolds number of 5x105, determine the following
torisob [31]

Given:

Assuming the transition to turbulence for flow over a flat plate happens at a Reynolds number of 5x105, determine the following for air at 300 K and engine oil at 380 K. Assume the free stream velocity is 3 m/s.

To Find:

a. The distance from the leading edge at which the transition will occur.

b. Expressions for the momentum and thermal boundary layer thicknesses as a function of x for a laminar boundary layer

c. Which fluid has a higher heat transfer

Calculation:

The transition from the lamina to turbulent begins when the critical Reynolds

number reaches 5\times 10^5

(a).  \;\text{Rex}_{cr}=5 \times 10^5\\\\\frac{\rho\;vx}{\mu}=5 \times 10^5\\\text{density of of air at}\;300K=1.16  \frac{kg}{m\cdot s}\\\text{viscosity of of air at}\;300K=1.846 \times 10^{-5} \frac{kg}{m\cdot s} \\v=3m/s\\\Rightarrow x=\frac{5\times 10^5 \times 1.846 \times 10^{-5} }{1.16 \times 3} =2.652 \;m \;\text{for air}\\(\text{similarly for engine oil at 380 K for given}\; \rho \;\text{and} \;\mu)\\

(b).\; \text{For the lamina boundary layer momentum boundary layer thickness is given by}:\\\frac{\delta}{x} =\frac{5}{\sqrt{R_e}}\;\;\;\;\quad\text{for}\; R_e(c). \frac{\delta}{\delta_t}={P_r}^{\frac{r}{3}}\\\text{For air} \;P_r \;\text{equivalent 1 hence both momentum and heat dissipate with the same rate for oil}\; \\P_r >>1 \text{heat diffuse very slowly}\\\text{So heat transfer rate will be high for air.}\\\text{Convective heat transfer coefficient will be high for engine oil.}

7 0
3 years ago
Timescale limits knowledge for scientists because it is difficult for them to see much beyond their lifetimes. Question 1 option
vaieri [72.5K]

Answer:

I think true

Explanation:

Well I mean...we cant see the future. Certain things will be achieveable in different ganerations like going on mars

8 0
2 years ago
Need help fast I been stuck in this for the longest
gavmur [86]

Answer:

3rd and 4rth

Explanation:

a geologist studies the earth and both of these have something to do with the earth

6 0
3 years ago
Troy must keep track of the amount of refrigerant he uses from a 50-pound cylinder to ensure that accurate
IgorLugansk [536]

Answer:

Amount of gas still in cylinder = 28 pound

Explanation:

Given:

Amount of gas in cylinder = 50 pound

Amount of gas used in Ms. Jones system = 13 pound

Amount of gas used in client system = 9 pound

Find:

Amount of gas still in cylinder

Computation:

Amount of gas still in cylinder = Amount of gas in cylinder - Amount of gas used in Ms. Jones system - Amount of gas used in client system

Amount of gas still in cylinder = 50 - 13 - 9

Amount of gas still in cylinder = 28 pound

7 0
3 years ago
A rigid 14-L vessel initially contains a mixture of liquid water and vapor at 100°C with 12.3 percent quality. The mixture is th
tigry1 [53]

Answer:

Q = 65.388 KJ

Explanation:

To calculate the heat required for the given process Q, we recall the energy balance equation.

Therefore, : Q = Δ U = m (u₂ - u₁) ..................equation (1)

We should note that there are no kinetic or potential energy change so the heat input in the system is converted only to internal energy.

Therefore, we will start the equation with the mass of the water (m) using given the initial percentage quality as x₁ = 0.123 and initial temperature t₁ = 100⁰c , we can them determine the initial specific volume v₁ of the mixture. For the calculation, we will also need the specific volume of liquid vₙ  = 0.001043m³/kg and water vapour (vₐ) = 1.6720m³/kg

Therefore, u₁ = vₙ + x₁ . ( vₐ - vₙ)

                   u₁ = 0.001043m³/kg + 0.123 . ( 1.6720m³/kg - 0.001043m³/kg)

                   u₁ = 0.2066m³/kg

Moving forward, the mass of the vapor can then be calculated using the given volume of tank V = 14 L but before the calculation, we need to convert the volume to from liters to m³.

Therefore, V = 14L . 1m² / 1000L = 0.014 m³

Hence, m = V / u₁

                 0.014m³ / 0.2066 m³/kg

              m = 0. 0677 kg

Also, the initial specific internal energy u₁ can be calculated using the given the initial given quality of x₁ , the specific internal energy of liquid water vₐ = 419.06 kj / kg and the specific internal energy of evaporation vₐₙ = 2087.0 kj/kg.

Therefore, u₁ = vₐ + x₁ . vₐₙ

                   u₁ = 419.06 kj / kg + 0.123  .  2087.0 kj/kg

                    u₁ = 675.76 kj/kg

For the final specific internal energy u₂, we first need to calculate the final quality of the mixture x₂ . The tank is rigid meaning the volume does not change and it is also closed meaning the mass does not change.from this, we can conclude the the specific volume also does not change during the process u₁ = u₂. This allows us to use the given final temperature T₂ = 180⁰c to determine the final quality x₂ of the mixture. for the calculation, we will also need the specific volume of liquid vₙ=0.001091m³/kg and vapor vₐ =  0.39248m³/kg

Hence, x₂ = u₂ - vₙ / uₐ

x₂ = 0.2066 m³/kg - 0.001091m³/kg / 0.39248m³/kg

x₂ = 0.524

Moving forward to calculate the final internal energy u₂, we have :

u₂ = vₙ + x₂ . vₙₐ

u₂ = 631.66 kj/kg + 0.524  . 1927.4 kj/kg

u₂ = 1641.62 kj/kg

We now return to equation (1) to plug in the values generated thus far

Q = m (u₂ - u₁)

0. 0677 kg ( 1641.62 kj/kg - 675.76 kj/kg)

Q = 65.388KJ

7 0
3 years ago
Read 2 more answers
Other questions:
  • Consider a single crystal of some hypothetical metal that has the BCC crystal structure and is oriented such that a tensile stre
    10·1 answer
  • Technician A says independent shops are not affiliated with vehicle manufacturers, but it is easy for technicians who work in th
    8·1 answer
  • Supercharging is the process of (a) Supplying the intake of an engine with air at a density greater than the density of the surr
    7·1 answer
  • In the 5 Code of Federal Regulations (C.F.R.), it is recommended that an individual has security awareness training before s/he
    8·2 answers
  • What is matrix ? answer plzzz 27 point you got answer​
    15·2 answers
  • Please help <br>.. <br>....<br> . .<br>....<br>...​
    13·1 answer
  • A moving-coil instrument, which gives full-scale deflection with 0.015 A has a copper coil having resistance of 1.5 Ohm at 15°C
    7·1 answer
  • A low-resistance path in a circuit, commonly called a _____ can cause a circuit breaker to trip
    7·1 answer
  • The gage pressure measured as 2.2 atm, the absolute pressure of gas is 3.2 bar. Please determine the local atmospheric pressure
    14·1 answer
  • Need help, I will give cake :))<br><br> + branliest
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!