To solve this problem we will apply the concepts related to energy conservation. With this we will find the speed before the impact. Through the kinematic equations of linear motion we will find the velocity after the impact.
Since the momentum is given as the product between mass and velocity difference, we will proceed with the velocities found to calculate it.
Part A) Conservation of the energy





Part B) Kinematic equation of linear motion,

Here
v= 0 Because at 1.5m reaches highest point, so v=0


Therefore the velocity after the collision with the floor is 3.7m/s
PART C) Total change of impulse is given as,





The normal force is the supporting force that is exerted on an object that is in contact with another stable object.
Answer: Option C
<u>Explanation:
</u>
Normal force is forward or upward pushing force acting on an object. Mostly the normal force acts as supporting force exerted on the object by the neighbouring stable object with which the object in question is in contact. So normal force falls under the category of contact forces.
Generally, normal force will be acting to support the weight of any object placed on another object. The best examples of normal forces are the weight of the book supported by table or by the pushing force of the wall on the person leaning on the wall.
A) According to the nebular theory, the Solar System formed from a huge gaseous nebula which at a certain point was perturbated. Atoms and molecules started colliding, forming planetesimals (a sort of big rocks). The planetesimals were attracted to each other by gravity, forming bigger warm almost spherical objects called protoplanets, which at the end cooled down forming planets.
Therefore the correct answer is "all of the above".
b) The planets closer to the Sun were (and still are) subject to higher temperatures, due to their close distance to the Sun. In these conditions, rocky materials undergo condensation, while iced gaseous materials undergo vaporization. In the outer parts of the Solar System temperatures are too low to allow these transformations.
The correct answer is again "all of the above".
Answer: 13.2 seconds.
Explanation: using equation of motion; S= ut +1/2at² where u = initial velocity=0
S= distance travelled
a = acceleration due gravity
t= time.
1 foot = 0.305m so,
S= 2860 feet =872.3m
S= ut+1/2 at²
872.3 = 0×t + 1/2×10 × t²
872.3 =0 + 5t²
T²= 872.3/5
T²= 174.46
Take the square root of T we then have;
t = 13.2 seconds to one decimal place.
Answer: A hot lightbulb gave off white visible light instead of ultraviolet light.
Explanation: