Answer:
(a) the high of a hill that car can coast up (engine disengaged) if work done by friction is negligible and its initial speed is 110 km/h is 47.6 m
(b) thermal energy was generated by friction is 1.88 x
J
(C) the average force of friction if the hill has a slope 2.5º above the horizontal is 373 N
Explanation:
given information:
m = 750 kg
initial velocity,
= 110 km/h = 110 x 1000/3600 = 30.6 m/s
initial height,
= 22 m
slope, θ = 2.5°
(a) How high a hill can a car coast up (engine disengaged) if work done by friction is negligible and its initial speed is 110 km/h?
according to conservation-energy
EP = EK
mgh = 
gh = 
h = 
= 47.6 m
(b) If, in actuality, a 750-kg car with an initial speed of 110 km/h is observed to coast up a hill to a height 22.0 m above its starting point, how much thermal energy was generated by friction?
thermal energy = mgΔh
= mg (h -
)
= 750 x 9.8 x (47.6 - 22)
= 188160 Joule
= 1.88 x
J
(c) What is the average force of friction if the hill has a slope 2.5º above the horizontal?
f d = mgΔh
f = mgΔh / d,
where h = d sin θ, d = h/sinθ
therefore
f = (mgΔh) / (h/sinθ)
= 1.88 x
/(22/sin 2.5°)
= 373 N
(a) For the work-energy theorem, the work done to lift the can of paint is equal to the gravitational potential energy gained by it, therefore it is equal to

where m=3.4 kg is the mass of the can, g=9.81 m/s^2 is the gravitational acceleration and
is the variation of height. Substituting the numbers into the formula, we find

(b) In this case, the work done is zero. In fact, we know from its definition that the work done on an object is equal to the product between the force applied F and the displacement:

However, in this case there is no displacement, so d=0 and W=0, therefore the work done to hold the can stationary is zero.
(c) In this case, the work done is negative, because the work to lower the can back to the ground is done by the force of gravity, which pushes downward. Its value is given by the same formula used in part (a):

Answer:
a) 
b) This value of specific heat is close to the specific heat of ice at -40° C and the specific heat of peat (a variety of coal).
c) The material is peat, possibly.
d) The material cannot be ice because ice doesn't exists at a temperature of 100°C.
Explanation:
Given:
- mass of aluminium,

- mass of water,

- initial temperature of the system,

- mass of copper block,

- temperature of copper block,

- mass of the other block,

- temperature of the other block,

- final equilibrium temperature,

We have,
specific heat of aluminium, 
specific heat of copper, 
specific heat of water, 
Using the heat energy conservation equation.
The heat absorbed by the system of the calorie-meter to reach the final temperature.



The heat released by the blocks when dipped into water:

where
specific heat of the unknown material
For the conservation of energy : 
so,


b)
This value of specific heat is close to the specific heat of ice at -40° C and the specific heat of peat (a variety of coal).
c)
The material is peat, possibly.
d)
The material cannot be ice because ice doesn't exists at a temperature of 100°C.
Answer:
12 meters per second (12 m/s)
why?
Because if you divide 10 seconds by 10 and 120 by 10, you will get 12 meters in 1 second.
Answer:
Explanation:
height of Ellipse
i.e.
Width of Ellipse 
i.e.
Equation of a vertical Ellipse is
at