Answer:
Isaac Newton
Explanation:
Newton's laws of motion, three statements describing the relations between the forces acting on a body and the motion of the body.
B. kinetic energy increases and potential energy decreases
Answer:
D
Explanation:i think but dont get mad if im wrong
Answer: 815.51 m
Explanation:
This situation is related to projectile motion or parabolic motion, in which the initial velocity of the bullet has only y-component, since it was fired straight up. In addition, we are dealing with constant acceleration (due gravity), therefore the following equations will be useful to solve this problem:
(1)
(2)
Where:
is the final velocity of the bullet
is the initial velocity of the bullet
is the acceleration due gravity, always directed downwards
is the time
is the vertical position of the bullet at 
Let's begin by finding
from (1):
(3)
(4)
Now we have to substitute (4) in (2):
(5)
Isolating
:
This is the displacement of the bullet after 6.9 s
To solve this problem it is necessary to apply the concepts related to the law of Malus which describe the intensity of light passing through a polarizer. Mathematically this law can be described as:

Where,
Indicates the intensity of the light before passing through the polarizer
I = Resulting intensity
= Indicates the angle between the axis of the analyzer and the polarization axis of the incident light
From the law of Malus when the light passes at a vertical angle through the first polarizer its intensity is reduced by half therefore

In the case of the second polarizer the angle is directly 60 degrees therefore



In the case of the third polarizer, the angle is reflected on the perpendicular, therefore, its angle of index would be

Then,



Then the intensity at the end of the polarized lenses will be equivalent to 0.09375 of the initial intensity.