Answer:
33 pounds
Step-by-step explanation:
Your weight on the Moon is 16.5% what you would experience on Earth. In other words, if you weighed 100 kg on Earth, you would weigh a mere 16.5 kg on the Moon. For you imperial folks, imagine you tipped the scales at 200 pounds. Your weight on the Moon would only be 33 pounds.
Answer:
The value of uxd=4
Step-by-step explanation:
since y=u, y=d, y=y
y=1/2 and 8
2y-1=0
2y=1
y=1/2
8-y=0
8=y
1/2*8=4
Answer:
a line is skinny and a plane is fat
Step-by-step explanation:
a plane is fat aline iskinny
The volume of a sphere is (4/3) (pi) (radius cubed).
The volume of one sphere divided by the volume of another one is
(4/3) (pi) (radius-A)³ / (4/3) (pi) (radius-B)³
Divide top and bottom by (4/3) (pi) and you have (radius-A)³ / (radius-B)³
and that's exactly the same as
( radius-A / radius-B ) cubed.
I went through all of that to show you that the ratio of the volumes of two spheres
is the cube of the ratio of their radii.
Earth radius = 6,371 km
Pluto radius = 1,161 km
Ratio of their radii = (6,371 km) / (1,161 km)
Ratio of their volumes = ( 6,371 / 1,161 ) cubed = about <u>165.2</u>
Note:
I don't like the language of the question where it asks "How many spheres...".
This seems to be asking how many solid cue balls the size of Pluto could be
packed into a shell the size of the Earth, and that's not a simple solution.
The solution I have here is simply the ratio of volumes ... how many Plutos
can fit into a hollow Earth if the Plutos are melted and poured into the shell.
That's a different question, and a lot easier than dealing with solid cue balls.