There are 2 valence elcetrons
In chemistry, bases are substances that, in aqueous solution, are slippery to the touch, taste<span> astringent, change the </span>color<span> of indicators (e.g., turn red litmus paper blue), react with acids to form salts, promote certain chemical reactions (base catalysis), accept protons from any proton donor, and/or contain ..</span>
Answer:
Mass is 725.46g/cm
Explanation:
Mass = density × volume = 22.6g/cm^3 × 32.1cm^2 = 725.46g/cm
Answer:
- Add AgNO₃ solution to both unlabeled flasks: based on solubility rules, you can predict that when you add AgNO₃ to the NaCl solution, you will obtain AgCl precipitate, while no precipitate will be formed from the NaClO₃ solution.
Explanation:
<u>1. Adding AgNO₃ to NaCl solution:</u>
- AgNO₃ (aq) + NaCl (aq) → AgCl (s) + NaNO₃ (aq)
<u>2. Adding AgNO₃ to NaClO₃ solution</u>
- AgNO₃ (aq) + NaClO₃ (aq) → AgClO₃ (aq) + NaNO₃ (aq)
<u />
<u>3. Relevant solubility rules for the problem.</u>
- Although most salts containing Cl⁻ are soluble, AgCl is a remarkable exception and is insoluble.
- All chlorates are soluble, so AgClO₃ is soluble.
- Salts containing nitrate ion (NO₃⁻) are generally soluble and NaNO₃ is not an exception to this rule. In fact, NaNO₃ is very well known to be soluble.
Hence, when you add AgNO₃ to the NaCl solution the AgCl formed will precipitate, and when you add the same salt (AgNO₃) to the AgClO₃ solution both formed salts AgClO₃ and NaNO₃ are soluble.
Then, the precipiate will permit to conclude which flask contains AgCl.
Answer:
mamamkalalllaamakkaoakmaa