This are letters of the alphabet some are periods and some are commas also they do not form any words or meaning
hope this helped ;)
Answer:
Zinc is an <em>element</em>.
Explanation:
Compounds are composed of two or more elements
Answer:
74.4 ml
Explanation:
C₆H₈O₇(aq) + 3NaHCO₃(s) => Na₃C₆H₅O₃(aq + 3CO₂(g) + 3H₂O(l)
Given 15g = 15g/84g/mol = 0.1786mole Sodium Bicarbonate
From equation stoichiometry 3moles NaHCO₃ is needed for each mole citric acid or, moles of citric acid needed is 1/3 of moles sodium bicarbonate used.
Therefore, for complete reaction of 0.1786 mole NaHCO₃ one would need 1/3 of 0.1786 mole citric acid or 0.0595 mole H-citrate.
The question is now what volume of 0.8M H-citrate solution would contain 0.0595mole of the H-citrate? This can be determined from the equation defining molarity. That is => Molarity = moles solute / Liters of solution
=> Volume (Liters) = moles citric acid / Molarity of citric acid solution
=> Volume needed in liters = 0.0.0595 mole/0.80M = 0.0744 Liters or 74.4 ml
<span>Two characteristics used to classify igneous rocks are texture and
</span>Mineral Grains
0.24 moles of oxygen must be placed in a 3.00 L container to exert a pressure of 2.00 atm at 25.0°C.
The variables given are Pressure, volume and temperature.
Explanation:
Given:
P = 2 atm
V = 3 litres
T = 25 degrees or 298.15 K by using the formula 25 + 273.17 = K
R = 0.082057 L atm/ mole K
n (number of moles) = ?
The equation used is of Ideal Gas law:
PV = nRT
n = 
Putting the values given for oxygen gas in the Ideal gas equation, we get
n = 
= 0.24
Thus, from the calculation using Ideal Gas law it is found that 0.24 moles of oxygen must be placed in a container.
Ideal gas law equation is used as it tells the relation between temperature, pressure and volume of the gas.