Answer:
The aquarium is covered and not in sunlight
Diminishing
Explanation:
The sun is the ultimate source of energy for all life and activities on earth. The aquarium is no exception.
Green plants manufactures food in the process of photosynthesis by combining carbon dioxide and water in the presence of sunlight.
- This food provides all other lives with energy through the break down of energy held in carbon chains.
Is the aquarium now in sunlight or is it covered?
Here is a feeding relationship between plants and fish in a pond. The producer here is the plants. The consumer is the fish.
Using carbon dioxide and water, plants manufactures food. When the amount of carbon starts decreasing it shows that the aquarium is covered.
The source of dissolved carbon dioxide in water is the fish which gives off this gas as it respires. When the fish ceases to respire, it does not have enough food and might have died thereby decreasing carbon dioxide levels.
What is happening to the number of energy storage molecules in the plants and fish as a result?
The energy levels in both plant and fish will begin to reduce because the plant is unable to produce food which the fish depends on.
This will furnish a rapid decline in the energy available in these living organisms since the plants are not able to produce.
Answer:
Rate of forward reaction will increase.
Explanation:
Effect of change in reaction condition on equilibrium is explained by Le Chatelier's principle. According to this principle,
If an equilibrium condition of a dynamic reversible reaction is disturbed by changing concentration, temperature, pressure, volume, etc, then reaction will move will in a direction which counteract the change.
In the given reaction,
A + B ⇌ C + D
If concentration of A is increase, then reaction will move in a direction which decreases the concentration of A to reestablish the equilibrium.
As concentration A decreases in forward direction, therefore, rate of forward reaction will increase.
Balance Chemical Equation for combustion of Propane is as follow,
C₃H₈ + 5 O₂ → 3 CO₂ + 4 H₂O
According to equation,
1 mole of C₃H₈ on combustion gives = 4 moles of H₂O
So,
5 moles of C₃H₈ on combustion will give = X moles of H₂O
Solving for X,
X = (5 mol × 4 mol) ÷ 1 mole
X = 20 moles of H₂O
Calculating number of molecules for 20 moles of H₂O,
As,
1 mole of H₂O contains = 6.022 × 10²³ molecules
So,
20 moles of H₂O will contain = X molecules
Solving for X,
X = (20 mole × 6.022 × 10²³ molecules) ÷ 1 mol
X = 1.20 ×10²⁵ Molecules of H₂O
B. Heating up the reaction will increase the entropy of a reaction.
<h3>
What is entropy?</h3>
Entropy is the measure of the degree of disorderliness of a system.
Entropy is also the measure of a system's thermal energy per unit temperature that is unavailable for doing useful work.
S = ΔH/T
where;
- S is entropy
- ΔH is energy input
- T is temperature
Entropy increases in reactions in which the total number of product molecules is greater than the total number of reactant molecules.
However, entropy increases as temperature increases. Thus, heating up the reaction will increase the entropy of a reaction.
Learn more about entropy here: brainly.com/question/6364271
#SPJ1