Answer:
t = 166 years
Explanation:
In order to calculate the amount of years that electrons take to cross the complete transmission line. You first calculate the drift speed of the electrons by using the following formula:
(1)
I: current on the wire = 1,010A
n: free charge density = 8.50*10^28 electrons/m^3
A: cross-sectional area of the transmission line = π*r^2
r: radius of the cross-sectional area = 2.00cm = 0.02m
You replace the values of the parameters in the equation (1):

Next, you use the following formula:
(2)
x: length of the line transmission = 310km = 310,000m
You replace the values of vd and x in the equation (2):

Finally, you convert the obtained t to seconds

The electrons take approximately 166 years to travel trough the complete transmission line
Complete Question
The complete question is shown on the first uploaded image
Answer:
A

B

C
The correct option is B
Explanation:
From the question we are told that
The refractive index of water is 
The refractive index of ethanol is 
Generally the threshold velocity for creating Cherenkov light from a charged particle as it travels through water is mathematically evaluated as

Where c is the speed of light with value 


Generally the threshold velocity for creating Cherenkov light from a charged particle as it travels through water is mathematically evaluated as

=> 
=> 
Whenever an object is in projectile motion, that is, it has 2-dimensional motion in the x and y axis, the resultant force on the object is in the y-direction.
This is because once the object has been projected, or the ball has been kicked in this case, there is no longer a force being applied on it in the x-direction. The air resistance is also neglected so the ball's final velocity in the x-direction is equal to its initial velocity in the x-direction.
However, the force of gravity cannot be neglected and causes the ball to come downwards. Therefore, after the ball has been projected, the net force on the ball is downwards, due to gravity.
To solve the exercise it is necessary to take into account the concepts of wavelength as a function of speed.
From the definition we know that the wavelength is described under the equation,

Where,
c = Speed of light (vacuum)
f = frequency
Our values are,


Replacing we have,



<em>Therefore the wavelength of this wave is
</em>
Answer:
41.8m/s^2
Explanation:
Since the dragster starts from rest, initial velocity (u) = 0m/s, final velocity (v) = 25.9m/s, time (t) = 0.62s
From the equations of motion, v = u + at
a = (v - u)/t = (25.9 - 0)/0.62 = 25.9/0.62 = 41.8m/s^2