Hello there.
<span>Which acid will undergo 100% dissociation when dissolved in water?
Answer:</span><span> HCL
</span><span>
Option: C
Second Question...not sure.
</span>
Answer:
Speed of bike = 2.5 km/h
Distance travel = 1,000 km (Approx.)
Explanation:
Given:
Distance cover by Helmut = 5 km
Time taken = 2 hour
Find:
Speed of bike
Computation:
Speed = Distance / Time
Speed of bike = 5 / 2
Speed of bike = 2.5 km/h
Given:
Speed of plane = 250 km/h
time taken = 3 hr 58 min = 3.967 hr
Find:
Distance travel
Computation:
Distance = Speed x time
Distance travel = 250 x 3.967
Distance travel = 991.669
Distance travel = 1,000 km (Approx.)
The gravity of Earth, denoted by g, is the net acceleration that is imparted to objects due to the combined effect of gravitation and the centrifugal force. In SI units this acceleration is measured in metres per second squared or equivalently in newtons per kilogram.
Answer:
4 kg → +4 m/s
5 kg → -5 m/s
Explanation:
The law of conservation of momentum states that:
- m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'
- left side → velocities before collision
- right side → velocities after collision
You'll notice that we have two missing variables: v₁' & v₂'. Assuming this is a perfectly elastic collision, we can use the conservation of kinetic energy to set the initial and final velocities of the individual bodies equal to each other.
Let's substitute all known variables into the first equation.
- (4)(-6) + (5)(3) = (4)v₁' + (5)v₂'
- -24 + 15 = 4v₁' + 5v₂'
- -9 = 4v₁' + 5v₂'
Let's substitute the known variables into the second equation.
- (-6) + v₁' = (3) + v₂'
- -9 = -v₁' + v₂'
- 9 = v₁' - v₂'
Now we have a system of equations where we can solve for v₁ and v₂.
- -9 = 4v₁' + 5v₂'
- 9 = v₁' - v₂'
Use the elimination method and multiply the bottom equation by -4.
- -9 = 4v₁' + 5v₂'
- -36 = -4v₁' + 4v₂'
Add the equations together.
<u>The final velocity of the second body (5 kg) is -5 m/s</u>. Substitute this value into one of the equations in the system to find v₁.
- 9 = v₁' - v₂'
- 9 = v₁' - (-5)
- 9 = v₁' + 5
- 4 = v₁'
<u>The final velocity of the first body (4 kg) is 4 m/s.</u>
<u></u>
We can verify our answer by making sure that the law of conservation of momentum is followed.
- m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'
- (4)(-6) + (5)(3) = (4)(4) + (5)(-5)
- -24 + 15 = 16 - 25
- -9 = -9
The combined momentum of the bodies before the collision is equal to the combined momentum of the bodies after the collision. [✓]
Answer:
an educated guess about the solution to the problem.
Explanation:
the hypothesis is is a specific, testable PREDICTION about what you expect to happen in your study.