Deposition is the geological process in which sediments, soil and rocks are added to a landform or landmass
Answer:
velocity = 62.89 m/s in 58 degree measured from the x-axis
Explanation:
Relevant information:
Before the collision, asteroid A of mass 1,000 kg moved at 100 m/s, and asteroid B of mass 2,000 kg moved at 80 m/s.
Two asteroids moving with velocities collide at right angles and stick together. Asteroid A initially moving to right direction and asteroid B initially move in the upward direction.
Before collision Momentum of A = 1000 x 100 =
kg - m/s in the right direction.
Before collision Momentum of B = 2000 x 80 = 1.6 x
kg - m/s in upward direction.
Mass of System of after collision = 1000 + 2000 = 3000 kg
Now applying the Momentum Conservation, we get
Initial momentum in right direction = final momentum in right direction =
And, Initial momentum in upward direction = Final momentum in upward direction = 1.6 x
So,
=
m/s
and
m/s
Therefore, velocity is = 
= 
= 62.89 m/s
And direction is
tan θ =
= 1.6
therefore, 
=
from x-axis
An indicator of average kinetic energy is temperature. Temperature is directly proportional to Kinetic energy of the molecules of an element.
After the great 1906 San Francisco earthquake, geolophysicistHarry Fielding Reid examined the displacement of the ground surface along the San Andreas Fault. He concluded that the quake must have been the result of the elastic reboundof the strain energy in the rocks on either side of the fault.
strain energy is 0. 5x force x (compression) X (compression)
There is a lot of force and a bit of compression when rocks squash up against other rocks causing earthquakes
the answer is CaO because that's what my homework says is correct