Explanation:
It is given that,
Mass of a bungee jumper is 65 kg
The time period of the oscillation is 38 s, hitting a low point eight more times.It means its time period is

After many oscillations, he finally comes to rest 25.0 m below the level of the bridge.
For an oscillating object, the time period is given by :

k = spring stiffness constant
So,

When the cord is in air,
mg=kx
x = the extension in the cord

So, the unstretched length of the bungee cord is equal to 25 m - 5.6 m = 19.4 m
5 times that of initial pressure i.e 1625 kpa
Answer:
A. h = 2.15 m
B.
Pb' = 122 KPa
Explanation:
The computation is shown below:
a) Let us assume the depth be h
As we know that

After solving this,
h = 2.15 m
Therefore the depth of the fluid is 2.15 m
b)
Given that
height of the extra fluid is

h' = 0.355 m
Now let us assume the pressure at the bottom is Pb'
so, the equation would be

Pb' = 122 KPa
Answer:
25
Explanation:
Given:
1 can of concentrate requires 3 cans of water
Now,
Total ounces in 200 6-ounce cans = 1200 ounces
also,
for 1 can of concentrate requires 3 cans of water
thus,
for 12 ounces can water can required = 3 × 12 ounces = 36 ounces of cans
Thus,
total ounce of juice per can = 12 + 36 = 48 ounces per can
therefore,
the number of 12-ounce cans required are = 
or
= 
or
the number of 12-ounce cans required are = 25
Answer:
(a) Initial volume will be 7.62 L
(b) Final temperature will be 303.85 K
Explanation:
We have given one mole of ideal gas done 3000 J
So work done W = 3000 J
Let initial volume is
and initial pressure
( As pressure is constant )
Final volume
= 0.025 
Number of moles n = 1
(B) From ideal gas of equation we know that 
So 
T = 303.85 Kelvin
(B) For isothermal process work done is equal to





So initial volume will be 7.62 L