If the impulse is 25 N-s, then so is the change in momentum.
The mass of the ball is extra, unneeded information.
Just to make sure, we can check out the units:
<u>Momentum</u> = (mass) x (speed) = <u>kg-meter / sec</u>
<u>Impulse</u> = (force) x (time) = (kg-meter / sec²) x (sec) = <u>kg-meter / sec</u>
Answer:
What's the question your asking?
Explanation:
It moves with an initial speed of 25.0 miles per second.
Oh I’m so sorry rip winter
As per the question the initial speed of the car [ u] is 42 m/s.
The car applied its brake and comes to rest after 5.5 second.
The final velocity [v] of the car will be zero.
From the equation of kinematics we know that
[ here a stands for acceleration]



Here a is taken negative as it the car is decelerating uniformly.
We are asked to calculate the stopping distance .
From equation of kinematics we know that
[here S is the distance]
![= 42*5.5 +\frac{1}{2} [-7.64] [5.5]^2 m](https://tex.z-dn.net/?f=%3D%2042%2A5.5%20%2B%5Cfrac%7B1%7D%7B2%7D%20%5B-7.64%5D%20%5B5.5%5D%5E2%20m)
[ans]
Answer : The kinetic energy depends directly on the mass of a particle.
Explanation :
We know that the kinetic energy of any particle is given by :

Where,
m is the mass of an object.
v is the velocity with which it is moving
Kinetic energy is due to the motion of the particle.
So, the kinetic energy of a particle is directly proportional to its mass.
Hence, the conclusion of the question is if the mass of a particle is increases then its kinetic energy also increase.