Start with 180.
<span>Is 180 divisible by 2? Yes, so write "2" as one of the prime factors, and then work with the quotient, 90. </span>
<span>Is 90 divisible by 2? Yes, so write "2" (again) as another prime factor, then work with the quotient, 45. </span>
<span>Is 45 divisible by 2? No, so try a bigger divisor. </span>
<span>Is 45 divisible by 3? Yes, so write "3" as a prime factor, then work with the quotient, 15 </span>
<span>Is 15 divisible by 3? [Note: no need to revert to "2", because we've already divided out all the 2's] Yes, so write "3" (again) as a prime factor, then work with the quotient, 5. </span>
<span>Is 5 divisible by 3? No, so try a bigger divisor. </span>
Is 5 divisible by 4? No, so try a bigger divisor (actually, we know it can't be divisible by 4 becase it's not divisible by 2)
<span>Is 5 divisible by 5? Yes, so write "5" as a prime factor, then work with the quotient, 1 </span>
<span>Once you end up with a quotient of "1" you're done. </span>
<span>In this case, you should have written down, "2 * 2 * 3 * 3 * 5"</span>
We have been given two functions
and
. We are asked to find
.
We will use composite function property
to solve our given problem.
Now we will combine like terms as:


Therefore, the value of
would be
.
Answer:
Step-by-step explanation:
Recursive formula
a1 = -17
a^n = a^n-1 + 5
Explicit formula:
a^n = -17 + (n-1) * 5