1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Diano4ka-milaya [45]
3 years ago
8

A train at a constant 79.0 km/h moves east for 27.0 min, then in a direction 50.0° east of due north for 29.0 min, and then west

for 37.0 min. What are the (a) magnitude and (b) angle (relative to east) of its average velocity during this trip?
Physics
1 answer:
ivolga24 [154]3 years ago
6 0

Answer:

Magnitude of avg velocity, |v_{avg}| = 18.9 km/h

\theta' = 56.85^{\circ}

Given:

Constant speed of train, v = 79 km/h

Time taken in East direction, t = 27 min = \frac{27}{60} h

Angle, \theta = 50^{\circ}

Time taken in 50^{\circ}east of due North direction, t' = 29 min =  \frac{29}{60} h

Time taken in west direction, t'' = 37 min =  \frac{27}{60} h

Solution:

Now, the displacement, 's' in east direction is given by:

\vec{s} = vt = 79\times \frac{27}{60} = 35.5\hat{i} km

Displacement in  50^{\circ} east of due North for 29.0 min is given by:

\vec{s'} = vt'sin50^{\circ}\hat{i} + vt'cos50^{\circ}\hat{j}

\vec{s'} = 79(\frac{29}{60})sin50^{\circ}\hat{i} + 79(\frac{29}{60})cos50^{\circ}\hat{j}

\vec{s'} = 29.25\hat{i} + 24.54\hat{j} km

Now, displacement in the west direction for 37 min:

\vec{s''} = - vt''hat{i} = - 79\frac{37}{60} = - 48.72\hat{i} km

Now, the overall displacement,

\vec{s_{net}} = \vec{s} + \vec{s'} + \vec{s''}

\vec{s_{net}} = 35.5\hat{i} + 29.25\hat{i} + 24.54\hat{j} - 48.72\hat{i}

\vec{s_{net}} =  16.03\hat{i} + 24.54\hat{j} km

(a) Now, average velocity, v_{avg} is given:

v_{avg} = \frac{total displacement, \vec{s_{net}}}{total time, t}

v_{avg} = \frac{16.03\hat{i} + 24.54\hat{j}}{\frac{27 + 29 + 37}{60}}

v_{avg} = 10.34\hat{i} + 15.83\hat{j}) km/h

Magnitude of avg velocity is given by:

|v_{avg}| = \sqrt{(10.34)^{2} + (15.83)^{2}} = 18.9 km/h

(b) angle can be calculated as:

tan\theta' = \frac{15.83}{10.34}

\theta' = tan^{- 1}\frac{15.83}{10.34} = 56.85^{\circ}

You might be interested in
Please help with vectors (will give BRAINLIEST answer)
zhenek [66]

just analyze it in this way:

20cos30*=10( radical 3 )

20sin30*=10

7 0
3 years ago
Each of the four expansion models (recollapsing, critical, coasting, and accelerating) predict different ages for the universe,
cupoosta [38]

Answer:

This is because the age of the universe is determined by the pace of expansion in the past, and each model forecasts a different pace.

Explanation:

The age of the universe is determined by the pace of expansion in the past, and each model forecasts a different pace.

This is due to the fact that the expansion rate in the coasting model is constant and never changes. Because the cosmos is growing faster now than during the old days, recollapsing and critical models give shorter ages. According to the accelerating model, the universe is growing at a slower rate currently than in the past, implying an older age.

4 0
2 years ago
A circular loop of wire with a radius of 15.0 cm and oriented in the horizontal xy-plane is located in a region of uniform magne
kati45 [8]

Answer:

The average emf that will be induced in the wire loop during the extraction process is 37.9 V

Explanation:

The average emf induced can be calculated from the formula

Emf = -N\frac{\Delta \phi}{\Delta t}

Where N is the number of turns

\Delta \phi is the change in magnetic  flux

\Delta t is the time interval

The change in magnetic flux is given by

\Delta \phi = \phi _{f} - \phi _{i}

Where \phi _{f} is the final magnetic flux

and \phi _{i} is the initial magnetic flux

Magnetic flux is given by the formula

\phi = BAcos(\theta)

Where B is the magnetic field

A is the area

and \theta is the angle between the magnetic field and the area.

Initially, the magnetic field and the area are pointed in the same direction, that is, \theta = 0^{o}

From the question,

B = 1.5 T

and radius = 15.0 cm = 0.15 m

Since it is a circular loop of wire, the area is given by

A = \pi r^{2}

∴ A = \pi (0.15)^{2}

A = 0.0225\pi

∴\phi_{i}  = (1.5)(0.0225\pi)cos(0^{o} )

\phi_{i}  = (1.5)(0.0225\pi)

( NOTE: cos (0^{o}) = 1 )

\phi_{i}  = 0.03375\pi Wb

For \phi_{f}

The field pointed upwards, that is \theta = 90^{o}. Since cos (90^{o}) = 0

Then

\phi_{f} = 0

Hence,

\Delta \phi = 0- 0.03375\pi

\Delta \phi = - 0.03375\pi

From the question

\Delta t = 2.8 ms = 2.8 \times 10^{-3} s

Here, N = 1

Hence,

Emf = -N\frac{\Delta \phi}{\Delta t} becomes

Emf = -(1)\frac{-0.03375\pi}{2.8 \times 10^{-3} }

Emf = 37.9 V

Hence, the average emf that will be induced in the wire loop during the extraction process is 37.9 V.

5 0
3 years ago
Atoms of the same element that differ only in the number of neutrons are known as.
True [87]

Answer:

They are known as isotopes

7 0
2 years ago
A(n) 0.2 kg object is swung in a vertical circular path on a string 0.1 m long. The acceleration of gravity is 9.8 m/s2 . If a c
Leya [2.2K]

Answer:

T=83.37N

Explanation:

Since the object is under a circular motion, according to Newton's second law, when the object is at the top of the circle we have:

\sum F_y: T-mg=F_c

Where F_c is the centripetal force and is given by:

F_c=ma_c=m\frac{v^2}{r}

Replacing and solving for T:

T=m\frac{v^2}{r}+mg\\T=0.2kg\frac{(6.38\frac{m}{s})^2}{0.1m}+0.2kg(9.8\frac{m}{s^2})\\T=83.37N

8 0
3 years ago
Other questions:
  • Suppose a person whose mass is m is being held up against the wall with a constant tangential velocity v greater than the minimu
    11·1 answer
  • A woman floats in a region of the Great Salt Lake where the water is about four times saltier than the ocean and has a density o
    8·1 answer
  • Calculate using coulombs: an object has 6 protons and 8 electrons. Calculate the magnitude of the charge of the objects. Thank y
    9·1 answer
  • A ball is thrown vertically upward. What are its velocity and acceleration when it reaches its maximum altitude? What is its acc
    14·1 answer
  • A 5.0 kg mass is suspended from a spring. Pulling the mass down by an additional 10 cm takes a force of 20 N. If the mass is the
    13·1 answer
  • A heavy, 6 m long uniform plank has a mass of 30 kg. It is positioned so that 4 m is supported on the deck of a ship and 2 m sti
    14·1 answer
  • What occurs when a swimmer pushes through the water to swim?
    11·2 answers
  • 3. Light travels from the Sun to Earth in 8.3 min. Given that the speed of light is 3.00108 m/s, what is the distance in meters
    10·1 answer
  • Please help... <br> !!!!!!!
    10·1 answer
  • Please answer the question in the picture
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!