Answer:
110.9 m/s²
Explanation:
Given:
Distance of the tack from the rotational axis (r) = 37.7 cm
Constant rate of rotation (N) = 2.73 revolutions per second
Now, we know that,
1 revolution =
radians
So, 2.73 revolutions = 
Therefore, the angular velocity of the tack is, 
Now, radial acceleration of the tack is given as:

Plug in the given values and solve for
. This gives,
![a_r=(17.153\ rad/s)^2\times 37.7\ cm\\a_r=294.225\times 37.7\ cm/s^2\\a_r=11092.28\ cm/s^2\\a_r=110.9\ m/s^2\ \ \ \ \ \ \ [1\ cm = 0.01\ m]](https://tex.z-dn.net/?f=a_r%3D%2817.153%5C%20rad%2Fs%29%5E2%5Ctimes%2037.7%5C%20cm%5C%5Ca_r%3D294.225%5Ctimes%2037.7%5C%20cm%2Fs%5E2%5C%5Ca_r%3D11092.28%5C%20cm%2Fs%5E2%5C%5Ca_r%3D110.9%5C%20m%2Fs%5E2%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5B1%5C%20cm%20%3D%200.01%5C%20m%5D)
Therefore, the radial acceleration of the tack is 110.9 m/s².
Answer:
Option C. be frozen at 12 noon
Explanation:
This can be explained by the special theory of relativity according to which at greater speeds time slows down and length contracts in the direction of motion.
Also if a body travels at the speed of light time will stop and the body will will reduce to zero length.
Therefore, for the given case time will freeze at 12 noon.
In electrical engineering, ground or earth is the reference point in an electrical circuit from which voltages are measured, a common return path for electric current, or a direct physical connection to the earth. Electrical circuits may be connected to ground (earth) for several reasons.
Answer:
19320 K
Explanation:
The temperature of a star is related to its peak wavelength by Wien's displacement law:

where
T is the absolute temperature at the star's surface
is Wien's displacement constant
is the peak wavelength
Here we have

Substituting into the equation, we find

Answer:
as an object gains speed it gains kinetic energy
Explanation:
i am mixed with the very first one i dont really know if its right so if its wrong my bad