Answer:
v = 22.54 mph.
Explanation:
Given that,
Distance moved, d = 200 m
Time, t = 19.8 s
We need to find the runner's average speed.
We know that,
1 mile = 1609.34 m
200 m = 0.124 miles
19.8 seconds = 0.0055 h
So,
Speed = distance/time

So, the runner's average speed is 22.54 mph.
The way I actually did that it was just like a little bit of a panic attack and I was like literally dying laughing at my chrome book mark and I was like literally dying laughing at the park I was laughing so loud and I’m literally gonna laughing so I can’t do tell him what he says I don’t think I
I assume that the ball is stationary (v=0) at point B, so its total energy is just potential energy, and it is equal to 7.35 J.
At point A, all this energy has converted into kinetic energy, which is:

And since K=7.35 J, we can find the velocity, v:
Answer:
Their bodies don't conduct electricity like we do.
Explanation:
The twice as heavy weight will hit the ground with more force, or impact.