<span>When the question says the ball lands a distance of 235 meters from the release point, we can assume this means the horizontal distance is 235 meters.
Let's calculate the time for the ball to fall 235 meters to the ground.
y = (1/2)gt^2
t^2 = 2y / g
t = sqrt{ 2y / g }
t = sqrt{ (2) (235 m) / (9.81 m/s^2) }
t = 6.9217 s
We can use the time t to find the horizontal speed.
v = d / t
v = 235 m / 6.9217 s
v = 33.95 m/s
Since the horizontal speed is the speed of the plane, the speed of the plane is 33.95 m/s</span>
Answer:
The International Space Station move at 7.22 km/s.
Explanation:
Orbital speed of satellite is given by
, where G is gravitational constant, M is mass of Earth and r is the distance to satellite from centre of Earth.
r = R + h = 6350 + 1400 = 7750 km = 7.75 x 10⁶ m
G = 6.673 x 10⁻¹¹ Nm²/kg²
M = 5.98 x 10²⁴ kg
Substituting

The International Space Station move at 7.22 km/s.
<span>D. A burning candle. (chemical energy into energy of heat and light, i.e. thermal and wave)</span>
The ecological footprint finds the person demand on natural demand.
<h3>What is ecological footprint?</h3>
The ecological footprint is the method promoted by the Global Footprint Network to find human demand on natural capital. The quantity of nature it takes to support people or an economy. It tracks this demand through an ecological accounting system.
Some things which could do to reduce your footprint is Reduce Your Use of Single-Use, Disposable Plastics, Switch to Renewable Energy, Eat Less Meat, Reduce your Waste, Recycle Responsibly, Drive Less, Reduce Your Water Use, Support Local.
Thus, the ecological footprint is to find person demand on natural demand.
Learn more about ecological footprint.
brainly.com/question/14441911
#SPJ1
Answer:
<h2>a) Time elapsed before the bullet hits the ground is 0.553 seconds.</h2><h2>b)
The bullet travels horizontally 110.6 m</h2>
Explanation:
a) Consider the vertical motion of bullet
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Displacement, s = 1.5 m
Substituting
s = ut + 0.5 at²
1.5 = 0 x t + 0.5 x 9.81 xt²
t = 0.553 s
Time elapsed before the bullet hits the ground is 0.553 seconds.
b) Consider the horizontal motion of bullet
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 200 m/s
Acceleration, a = 0 m/s²
Time, t = 0.553 s
Substituting
s = ut + 0.5 at²
s = 200 x 0.553 + 0.5 x 0 x 0.553²
s = 110.6 m
The bullet travels horizontally 110.6 m