Answer:
A. Ahmed has a greater tangential speed than Jacques.
D. Jacques and Ahmed have the same angular speed.
Explanation:
Kinematics of the merry-go-round
The tangential speed of the merry-go-round is calculated using the following formula:
v = ω*R
Where:
v is the tangential speed in meters/second (m/s)
ω is the angular speed in radians/second (rad/s)
R is the angular speed in meters (m)
Data
dA = RA : Ahmed distance to the axis of rotation
dJ = RJ : Jacques distance to the axis of rotation
Problem development
We apply the formula (1)
v = ω*R
vA= ω*RA : Ahmed tangential speed
vJ= ω*RJ : Jacques tangential speed
Ahmed is at a greater distance from the axis of rotation than Jacques, then,
RA ˃ RJ and Ahmed and Jacques have the same speed ω, then:
vA ˃ vJ
Answer:
89.5 Hz
Explanation:
The relationship between the frequency and the wavelength is given by the following formula:

where,
f = frequency
c = speed of light
λ = wavelength
Since the speed of light is constant. Therefore the formula suggests an inverse relationship between the frequency and the wavelength. Hence, the station with the lowest frequency will have the longest wavelength.
Therefore, the answer is:
<u>89.5 Hz</u>
Well ice would be less dense, as water freezes it expands which would reduce density and you can tell just by putting ice cubes in water
Answer:
The total Mechanical energy will be zero
Explanation: Escape velocity is the velocity required by a free object in order to overcome the impact of the force of gravity. The total mechanical energy of an object is the total energy possessed by an object which includes its kinectic and potential energy.
since the object is moving at an escape velocity which is 11.2m/s the object will be assumed to be weightless
Etotal = kinetic energy + potential energy
kinetic energy= 1/2*M*V*V
Potential energy=MGH
Etotal=1/2*0*11.2*11.2+0*0*0
Etotal=0+0
Etotal=0.