The mass of lead required to make a 1.00 cm3 fishing sinker is 11.3g.
What is mass?
Mass is a metric used in physics to express inertia, a fundamental characteristic of all matter. A mass of matter's resistance to altering its direction or speed in response to the application of a force is what it essentially is. The change that an applied force produces is smaller the more mass a body has.
Given :
Density of lead = 11.3 g/cm3
Volume of sinker = 1.00 cm3
One of a substance's attributes is density, which is calculated by dividing the mass by the volume. Mathematically:
Density : Mass / volume
therefore after putting the values,
mass= 11.3g
To learn more about density click on the link below:
brainly.com/question/18939565
#SPJ4
Answer:
The taken is 
Explanation:
Frm the question we are told that
The speed of car A is 
The speed of car B is 
The distance of car B from A is 
The acceleration of car A is 
For A to overtake B
The distance traveled by car B = The distance traveled by car A - 300m
Now the this distance traveled by car B before it is overtaken by A is

Where
is the time taken by car B
Now this can also be represented as using equation of motion as

Now substituting values

Equating the both d

substituting values




Solving this using quadratic formula we have that

Answer:
c.100 minutes
Explanation:
Total distance = 10 km
Runs for 1 km every 5 minutes
walks 1 km every 15 min
She alternates between walking and running so, Jessica will walk 5 km and run 5 Km
Time taken by Jessica for walking
: 5 km
Time taken to walk 1 km=5 minutes
Time taken to walk 5 km
=> 5 X 5
=>25 minutes
Time taken by Jessica for Running
: 5km
Time taken to run 1 km = 15 minutes
=> 5 X 15
=>75 minutes
Total time taken = Time taken by Jessica for walking + Time taken by Jessica for Running
=>25 minutes +75 minutes
=> 100 minutes
Answer:
The correct option is "In order to gain more power you would need to increase either current or voltage."
Explanation:
To answer the question, we note that;
The formula for Electrical Power are as follows,
P = I²·R, or P = I·V,
Therefore, if we increase either the current, I with the voltage, V remaining constant or we increase the Voltage, V with the current, I remaining constant or we increase both the voltage, V an the current, I the Power, P will be increased.
Therefore, the correct option is "In order to gain more power you would need to increase either current or voltage."
The answer is 35 minutes
The Newton's law of cooling is:
T(x) = Ta + (To - Ta)e⁻ⁿˣ
T(x) - the temperature of the coffee at time x
Ta - the ambient temperature
To - the initial temperature
n - constant
step 1. Calculate constant k:
We have:
T(x) = 200°F
x = 10 min
Ta = 68°F
To = 210°F
n = ?
T(x) = Ta + (To - Ta)e⁻ⁿˣ
200 = 68 + (210 - 68)e⁻ⁿ*¹⁰
200 = 68 + 142 * e⁻¹⁰ⁿ
200 - 68 = 142 * e⁻¹⁰ⁿ
132 = 142 * e⁻¹⁰ⁿ
e⁻¹⁰ⁿ = 132/142
e⁻¹⁰ⁿ = 0.93
Logarithm both sides with natural logarithm:
ln(e⁻¹⁰ⁿ) = ln(0.93)
-10n * ln(e) = -0.07
-10n * 1 = - 0.07
-10n = -0.07
n = -0.07 / - 10
n = 0.007
Step 2. Calculate time x when T(x) = 180°F:
We have:
T(x) = 180°F
x = ?
Ta = 68°F
To = 210°F
n = 0.007
T(x) = Ta + (To - Ta)e⁻ⁿˣ
180 = 68 + (210 - 68)e⁻⁰.⁰⁰⁷*ˣ
180 - 68 = 142 * e⁻⁰.⁰⁰⁷*ˣ
112 = 142 * e⁻⁰.⁰⁰⁷⁾*ˣ
e⁻⁰.⁰⁰⁷*ˣ = 112/142
e⁻⁰.⁰⁰⁷*ˣ = 0.79
Logarithm both sides with natural logarithm:
ln(e⁻⁰.⁰⁰⁷*ˣ) = ln(0.79)
-0.007x * ln(e) = -0.24
-0.007x * 1 = -0.24
-0.007x = -0.24
x = -0.24 / -0.007
x ≈ 35