Answer:
162.78 m/s is the most probable speed of a helium atom.
Explanation:
The most probable speed:

= Boltzmann’s constant =
T = temperature of the gas
m = mass of the gas particle.
Given, m = 
T = 6.4 K
Substituting all the given values :


162.78 m/s is the most probable speed of a helium atom.
According to the conservation of mechanical energy, the kinetic energy just before the ball strikes the ground is equal to the potential energy just before it fell.
Therefore, we can say KE = PE
We know that PE = m·g·h
Which means KE = m·g·h
We can solve for h:
h = KE / m·g
= 20 / (0.15 · 9.8)
= 13.6m
The correct answer is: the ball has fallen from a height of 13.6m.
Answer:
The Internal energy of the gas did not change
Explanation:
In this situation the Internal energy of the gas did not change and this is because according the the first law of thermodynamics
Δ U = Q - W ------ ( 1 )
Δ U = change in internal energy
Q = heat added
W = work done
since Q = W. the value of ΔU will be = zero i.e. No change
Answer:
The answer to the question is
The roller coaster will reach point B with a speed of 14.72 m/s
Explanation:
Considering both kinetic energy KE = 1/2×m×v² and potential energy PE = m×g×h
Where m = mass
g = acceleration due to gravity = 9.81 m/s²
h = starting height of the roller coaster
we have the given variables
h₁ = 36 m,
h₂ = 13 m,
h₃ = 30 m
v₁ = 1.00 m/s
Total energy at point 1 = 0.5·m·v₁² + m·g·h₁
= 0.5 m×1² + m×9.81×36
=353.66·m
Total energy at point 2 = 0.5·m·v₂² + m·g·h₂
= 0.5×m×v₂² + 9.81 × 13 × m = 0.5·m·v₂² + 127.53·m
The total energy at 1 and 2 are not equal due to the frictional force which must be considered
Total energy at point 2 = Total energy at point 1 + work done against friction
Friction work = F×d×cosθ = (
× mg)×60×cos 180 = -117.72m
0.5·m·v₂² + 127.53·m = 353.66·m -117.72m
0.5·m·v₂² = 108.41×m
v₂² = 216.82
v₂ = 14.72 m/s
The roller coaster will reach point B with a speed of 14.72 m/s
Answer:
The maximum change in flux is 
The average induced emf 
Explanation:
From the question we are told that
The speed of the technician is 
The distance from the scanner is 
The initial magnetic field is 
The final magnetic field is 
The diameter of the loop is 
The area of the loop is mathematically represented as
![A = \pi [\frac{D}{2} ]^2](https://tex.z-dn.net/?f=A%20%20%3D%20%20%5Cpi%20%5B%5Cfrac%7BD%7D%7B2%7D%20%5D%5E2)


At maximum the change in magnetic field is mathematically represented as

=> 

The average induced emf is mathematically represented as


