I think mathematically it should be 6 m
6m I guess
Since speed (v) is in ft/sec, let's convert our diameters from inches to feet:
1) 5/8in = 0.625in
0.625in × 1ft/12in = 0.0521ft
2) 0.25in × 1ft/12in = 0.021ft
Equation:






new velocity coming out of the hose then is
44 ft/sec
I think it will go down like decrease minus or whatever you call it
Given:
Mass of the rail road car, m = 2 kg
velocity of the three cars coupled system, v' = 1.20 m/s
velocity of first car,
= 3 m/s
Solution:
a) Momentum of a body of mass 'm' and velocity 'v' is given by:
p = mv
Now for the coupled system according to law of conservation of momentum, total momentum of a system before and after collision remain conserved:
(1)
where,
= velocity of the first car
= velocity of the 2 coupled cars after collision
Now, from eqn (1)


v' = 1.80 m/s
Therefore, the velocity of the combined car system after collision is 1.80 m/s
Change in speed = (acceleration) x (time)
4 minutes = 240 seconds
Change in speed = (40 m/s²) x (240 seconds)
Change in speed = <em>9,600 m/s</em>
What you're actually describing here is a car pulling 4 G's for 4 minutes, and ending up going 21,475 miles per hour.
The driver would definitely NOT get a speeding ticket, because nobody could catch him.
Also, his car would heat up and shoot flames from atmospheric friction.
(He could avoid this with some fancy steering, leave the atmosphere, and end up in low-Earth-orbit.)
Actually, I hope there's nobody in the car. His experience wouldn't be pretty.