Density = (mass) / (volume)
4,000 kg/m³ = (mass) / (0.09 m³)
Multiply each side
by 0.09 m³ : (4,000 kg/m³) x (0.09 m³) = mass
mass = 360 kg .
Force of gravity = (mass) x (acceleration of gravity)
= (360 kg) x (9.8 m/s²)
= (360 x 9.8) kg-m/s²
= 3,528 newtons .
That's the force of gravity on this block, and it doesn't matter
what else is around it. It could be in a box on the shelf or at
the bottom of a swimming pool . . . it's weight is 3,528 newtons
(about 793.7 pounds).
Now, it won't seem that heavy when it's in the water, because
there's another force acting on it in the upward direction, against
gravity. That's the buoyant force due to the displaced water.
The block is displacing 0.09 m³ of water. Water has 1,000 kg of
mass in a m³, so the block displaces 90 kg of water. The weight
of that water is (90) x (9.8) = 882 newtons (about 198.4 pounds),
and that force tries to hold the block up, against gravity.
So while it's in the water, the block seems to weigh
(3,528 - 882) = 2,646 newtons (about 595.2 pounds) .
But again ... it's not correct to call that the "force of gravity acting
on the block in water". The force of gravity doesn't change, but
there's another force, working against gravity, in the water.
Desired operation: A + B = C; {A,B,C) are vector quantities.
<span>Issue: {A,B} contain error (measurement or otherwise) </span>
<span>Objective: estimate the error in the vector sum. </span>
<span>Let A = u + du; where u is the nominal value of A and du is the error in A </span>
<span>Let B = v + dv; where v is the nominal value of B and dv is the error in B </span>
<span>Let C = w + dw; where w is the nominal value of C and dw is the error in C [the objective] </span>
<span>C = A + B </span>
<span>w + dw = (u + du) + (v + dv) </span>
<span>w + dw = (u + v) + (du + dv) </span>
<span>w = u+v; dw = du + dv </span>
<span>The error associated with w is the vector sum of the errors associated with the measured quantities (u,v)</span>
Answer:
Increase in the temperature of water would be 0.9 degree C
Explanation:
As we know by energy conservation
Change in the gravitational potential energy of the cylinder = increase in the thermal energy of the water
Here we know that the gravitational potential energy of the cylinder is given as

here we have
h = 300 m
now we can say

now if the cylinder falls from height h = 100 m
then we have

now from above two equations


False. Ray AB starts at point A and continues through and infinity beyond point B. Ray BA is the reverse. in the name of a Ray the starting point always comes first.
Physics contributes to the technological infrastructure and provides trained personnel need to take advantage of scientific advances and discoveries.
Physics is an important element in the education of chemists, engineers and computer scientists as well as practitioners of the other physical and biomedical sciences .