1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serhud [2]
3 years ago
7

what is usually caused when dissimilar materials are rubbed together transferring electrons from one to another

Physics
1 answer:
Volgvan3 years ago
6 0

Answer:

static electricity

Explanation:

You might be interested in
Which object will have greater acceleration? Why?​
dexar [7]

Answer:

Object D

Explanation:

Use Newton's Second Law to determine the acceleration that each object has.

  • F = ma

The force applied in both cases is 50 N, but the mass for object C and object D is different.

Let's start with object C first:

  • F = ma
  • 50 N = 10 kg · a
  • 50 = 10a
  • 5 = a

The acceleration object C undergoes is 5 m/s².  

Now let's calculate object D next:

  • F = ma
  • 50 N = 2 kg * a
  • 50 = 2a
  • 25 = a

The acceleration object D undergoes is 25 m/s².

Object D has greater acceleration because it has a smaller mass. The object with a smaller mass will accelerate more in order to satisfy Newton's 2nd Law.

7 0
3 years ago
The element radon is at the opposite end of the range, with the lowest specific heat of all naturally occurring elements. Radon'
allochka39001 [22]

Explanation:

Q = mc∆T

= (0.34 kg)(94 J/kg-°C)(25°C)

= 799 J

5 0
3 years ago
The closest distance a book can be read from a pair of reading eyeglasses (Power = 1.55 dp) is 26.0 cm. What is the near distanc
Mnenie [13.5K]

Answer:

The image distance is 20.0 cm.

Explanation:

Given that,

Power = 1.55 dp

Distance between book to eye = 26.0+3.00=29.0 cm

We need to calculate the focal length

Using formula of focal length

f = \dfrac{1}{P}

Put the value into the formula

f=\dfrac{1}{1.55}

f=0.645\ m

f=64.5\ cm

We need to calculate the image distance

Using lens formula

\dfrac{1}{f}=\dfrac{1}{u}+\dfrac{1}{v}

\dfrac{1}{v}=\dfrac{1}{f}-\dfrac{1}{-u}

Put the value into the formula

\dfrac{1}{v}=\dfrac{1}{64.5}-\dfrac{1}{-29}

\dfrac{1}{v}=\dfrac{187}{3741}

v=20.0\ cm

Hence, The image distance is 20.0 cm.

5 0
3 years ago
A body with the inertial
Andrews [41]

Answer:

Explanation:

Hi there,

To get started, recall the kinematic equations from either a textbook, equation sheet, etc. Kinematic equations are used when acceleration is <em>constant,</em> as stated in the prompt.

Best way to use kinematic equations is to see which variable you are looking for, then which variable is unknown to you and is not needed for that equation.

a) average velocity

Takes the form of:

v_a_v_g=\frac{d_t_o_t_a_l}{t}=\frac{v+v_0}{2} this is the literal definition of average velocity; initial plus final divided by 2.

We know total displacement and total time elapsed, so we will use the middle form of the equation:

v_a_v_g=\frac{1640m}{40s}=41 \ m/s

b) the final velocity

We can still use the average velocity formula, as the other two equations that include final velocity have acceleration variable which is unknown as of now.

Solve for final velocity:

v=(2v_a_v_g)-v_o = 2(41 \ m/s) - (8 m/s) = 74 m/s\\ this makes sense, since a velocity later in time is higher than a velocity earlier in time. It is increasing with increasing time because of acceleration.

c) the acceleration

There are two equations that can be used to solve this, but we will use the less time-consuming one, but both produce same answer:

a = \frac{v-v_0}{t_t_o_t_a_l} = \frac{(74-8)m/s}{40s} =1.65 m/s^{2}

Notice, change in velocity over change in time, and acceleration is constant. When acceleration is constant, it models a linear function, and acc. is just slope!

Study well and persevere. If you liked this solution, hit Thanks or give a rating!

thanks,

3 0
2 years ago
A 0.150-kg cart that is attached to an ideal spring with a force constant (spring constant) of 3.58 N/m undergoes simple harmoni
SVETLANKA909090 [29]

Answer:

E = 0.01 J

Explanation:

Given that,

The mass of the cart, m = 0.15 kg

The force constant of the spring, k = 3.58 N/m

The amplitude of the oscillations, A = 7.5 cm = 0.075 m

We need to find the total mechanical energy of the system. It can be given by the formula as follows :

E=\dfrac{1}{2}kA^2

Put all the values,

E=\dfrac{1}{2}\times 3.58\times (0.075)^2\\\\=0.01\ J

So, the value of total mechanical energy is equal to 0.01 J.

3 0
2 years ago
Other questions:
  • The length of the student desk is measured using a
    8·1 answer
  • What is circular motion​
    8·2 answers
  • What i the relationship of space between particles in soil and the flow of water through soil ?
    7·1 answer
  • A daring ranch hand sitting on a tree limb wishes to drop vertically onto a horse galloping under the tree. The constant speed o
    12·1 answer
  • What is the closest star that could go supernova?
    11·1 answer
  • A node is a point on a standing wave that has no displacement from the rest position. at the nodes, _____.
    15·2 answers
  • Scientific laws explain_____.
    5·2 answers
  • A storage tank contains a liquid at depth y where y=0 when the tank is half full. liquid is withdrawn at a constant flow rate q
    10·1 answer
  • Apart from physical factors, what other environmental factors are in your environment?
    10·1 answer
  • The unit for frequency is Hertz, or cycles per second. Question 5 options: True False
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!