Answer:
Second element(Titanium); [Ar] 3d2 4s2
Third element(Vanadium):Ar 3d3 4s2
Explanation:
Given that there are only three d orbitals in universe L instead of five, the electronic configuration of the second and third elements in the first transition series will now look thus;
Second element(Titanium); [Ar] 3d2 4s2
Third transition element(Vanadium):Ar 3d3 4s2
Hence, the electronic configuration of Titanium and Vanadium in universe L is just the same as what it is on earth.
Kepler's
third law shows the relationship between the orbital period of an object and
the distance between the object and the object it orbits.
The
simplified version of this law is: P^2 = a^3
Where,
P =
period of the orbit in years = 0.62 years
a =
average distance from the object to the object it orbits in AU. The
astronomical unit AU is a unit of length which is roughly equivalent to the
distance from Earth to the Sun.
Therefore
calculating for a:
0.62
^ 2 = a ^ 3
a =
0.62 ^ (2/3)
a =
0.727 AU = 0.72 AU
Therefore we can interpret this as: The distance from Venus to the Sun is about 72% of the distance from Earth to
Sun.
<span>Answer:
B. 0.72 AU</span>
Yes, and no. We all should know by know we do need the sun to survive, but we also need for energy is oxygen and the food we eat.
Answer: when the temperature is increased, the number of collisions per second increases.
Explanation:
the rate of collisions and the temperature is directly proportional. If the energy of the gas particles is boosted by using the temperature, the chances of the particles bumping into each other due to the high energy increases, thus increasing the number of collisions. This also increases the rate of reaction. Thus when temperature is increased the number of collisions also increases.
Answer:
Here's what I get.
Explanation:
- If your teachers don't ask for a specific type of formula, a condensed structural formula should be OK.
- If they ask specifically for a structural formula or a bond-line formula, that is what you must give.
Bottom line: ask your teachers in advance what they expect.