Answer:
Heat transfer during melting of ice plays greater role in cooling of liquid water.
Explanation:
Temperature of ice = -10 °c
Temperature of water = 0 °c
When ice cube is dipped in to the water.the heat transfer
Q = m c ΔT
⇒ Q = 1 × 2.01 × 10
⇒ Q = 20.1 KJ
Heat transfer during melting of ice
= latent heat of ice
Latent heat of ice = 334 KJ
⇒
= 334 KJ
Heat transfer during melting of ice is greater value than heat transfer during warming of ice from -10°C to 0°C.
Thus heat transfer during melting of ice plays greater role in cooling of liquid water.
Alright sorry you're getting the answer hours later, but i can help with this.
so you're looking for specific heat, the equation for it is <span>macaΔTa = - mbcbΔTb with object a and object b. that's mass of a times specific heat of a times final minus initial temperature of a equals -(mass of b times specific heat of b times final minus initial temperature of b)
</span>so putting in your values is, 755g * ca * (75 celsius - 84.5 celsius) = -(50g * cb * (75 celsius - 5 celsius))
well we know the specific heat of water is always 4180J/kg celsius, so put that in for cb
with a bit of simplification to the equation by doing everything on each side first you have, -7172.5 * ca = -14630000
divide both sides by -7172.5 so you can single out ca and you get, ca= 2039.74
add units for specific heat which are J/kg celsius and the specific heat of the material is 2039.74 J/kg celsius
Covalent compounds do not conduct electric current in a water solution well because they do not dissociate into ions.
1) Calculate the number of mols,n, of the substance
n = mass/ molar mass = 326.0 g / 58.45 g / mol = 5.577 moles
2) Calculate the molar heat of fusion as the total heat released by the sample divided by the number of moles
hf = heat released / n = 4325.8 cal / 5.577 moles = 775. 59 cal /mol