Answer: <span>C) Soap is a surfactant that disrupts the intermolecular forces of water making the paperclip sink.</span>
Explanation:
1) This is the set of choices that comes with this question:
<span>A) Soap is a surfactant that increases the intermolecular forces of water allowing the paperclip to continue to float.</span>
<span>B) Soap makes the water less viscous making the paperclip sink.</span>
<span>C) Soap is a surfactant that disrupts the intermolecular forces of water making the paperclip sink.</span>
<span>
D) Soap makes the water more viscous allowing the paperclip to continue to float.
</span>
2) Justification:
The paperclip is denser that water, so it should sink into the water. Then, why is the paperclip floating?
The papeclip is floating due to the high surface tension of the water.
The surface tension is the force that tends to keep the molecules of a liquid together resisting the spread due to other forces (gravity for example). The surface tension is what makes that a drop of water over a table keeps round and like a hemisphere instead of spreading along all the surface of the table.
That very same force makes it possible that some insects can stand over water and is the responsible for the meniscus that you see in the thin tubes that contain water (e.g. in the test tubes in your chemistry lab).
By the way, that strong intermolecular forces that keep the molecules of water attracted to each other is due the hydrogen bonds.
The soap is a surfactant which reduces the surface tension of the water, this is it disrupts the intermolecular forces of water, and that is what the option C) tells.
Answer:
0.91 atm is the partial pressure of just hydrogen gas.
Explanation:
Vapor pressure of water , p= 0.0313 atm
Partial pressure of hydrogen gas = 
Total pressure of the water vapors and hydrogen gas = P = 715 Torr
1 atm = 715 Torr

According Dalton's law of partial pressure:



0.91 atm is the partial pressure of just hydrogen gas.
Answer:
d. 60.8 L
Explanation:
Step 1: Given data
- Heat absorbed (Q): 53.1 J
- External pressure (P): 0.677 atm
- Final volume (V2): 63.2 L
- Change in the internal energy (ΔU): -108.3 J
Step 2: Calculate the work (W) done by the system
We will use the following expression.
ΔU = Q + W
W = ΔU - Q
W = -108.3 J - 53.1 J = -161.4 J
Step 3: Convert W to atm.L
We will use the conversion factor 1 atm.L = 101.325 J.
-161.4 J × 1 atm.L/101.325 J = -1.593 atm.L
Step 4: Calculate the initial volume
First, we will use the following expression.
W = - P × ΔV
ΔV = - W / P
ΔV = - 1.593 atm.L / 0.677 atm = 2.35 L
The initial volume is:
V2 = V1 + ΔV
V1 = V2 - ΔV
V1 = 63.2 L - 2.35 L = 60.8 L
Hey there,
Answer:
4 valence electrons.
Hope this helps :D
<em>~Top☺</em>