Answer : The new pressure of the gas will be, 468.66 atm
Explanation :
Boyle's Law : This law states that pressure of the gas is inversely proportional to the volume of the gas at constant temperature and number of moles.
(At constant temperature and number of moles)
or,

where,
= initial pressure of the gas = 74 atm
= final pressure of the gas = ?
= initial volume of the gas = 190 ml
= final volume of the gas = 30 ml
Now we put all the given values in the above formula, we get the final or new pressure of the gas.


Therefore, the new pressure of the gas will be, 468.66 atm
Answer:
The production of heat, light, or smoke is observed.
<span>"Alloy additions also suppress (lower) the melting range. Pure iron (Fe) has a fixed melting point of 1535°C, chromium (Cr) 1890°C and nickel (Ni) 1453°C compared to a range of 1400-1450 °C for type 304 stainless steel."</span>
<u>Answer:</u> The concentration of hydrogen gas at equilibrium is 0.0275 M
<u>Explanation:</u>
Molarity is calculated by using the equation:

Moles of HI = 0.550 moles
Volume of container = 2.00 L

For the given chemical equation:

<u>Initial:</u> 0.275
<u>At eqllm:</u> 0.275-2x x x
The expression of
for above equation follows:
![K_c=\frac{[H_2][I_2]}{[HI]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2%5D%5BI_2%5D%7D%7B%5BHI%5D%5E2%7D)
We are given:

Putting values in above expression, we get:

Neglecting the negative value of 'x' because concentration cannot be negative
So, equilibrium concentration of hydrogen gas = x = 0.0275 M
Hence, the concentration of hydrogen gas at equilibrium is 0.0275 M