Answer:
588.2 mL
Explanation:
- FeSO₄(aq) + 2KOH(aq) → Fe(OH)₂(s) + K₂SO₄(aq)
First we <u>calculate how many Fe⁺² moles reacted</u>, using the given <em>concentration and volume of FeSO₄ solution</em> (the number of FeSO₄ moles is equal to the number of Fe⁺² moles):
- moles = molarity * volume
- 187 mL * 0.692 M = 129.404 mmol Fe⁺²
Then we convert Fe⁺² moles to KOH moles, using the stoichiometric ratios:
- 129.404 mmol Fe⁺² *
= 258.808 mmol KOH
Finally we<u> calculate the required volume of KOH solution</u>, using <em>the given concentration and the calculated moles</em>:
- volume = moles / molarity
- 258.808 mmol KOH / 0.440 M = 588.2 mL
Answer:
a. Work
Explanation:
If you apply a force over a given distance - you have done work. Work = Change in Energy. If an object's kinetic energy or gravitational potential energy changes, then work is done. The force can act in the same direction of motion.
I don’t know “which substance” are you talking about??
You can put the picture there so we can see.
Answer:
Atoms of each element contain a characteristic number of protons and electrons. The number of protons determines an element's atomic number and is used to distinguish one element from another.
The kinda of energy the involves the flow of positive charge is Electrical