A mixture consists of numerous substances, whereas a substance does not consist of mixtures, but rather of compounds. Mixtures can be separated physically, while substances cannot.
Answer:
62.5 moles of O₂.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
2C₈H₁₈ + 25O₂ —> 16CO₂ + 18H₂O
From the balanced equation above,
2 moles of C₈H₁₈ reacted with 25 moles of O₂.
Finally, we shall determine the number of mole of O₂ needed to react with 5 moles of C₈H₁₈. This can be obtained as shown below:
From the balanced equation above,
2 moles of C₈H₁₈ reacted with 25 moles of O₂.
Therefore, 5 moles of C₈H₁₈ will react with = (5 × 25) / 2 = 62.5 moles of O₂.
Thus, 62.5 moles of O₂ is needed for the reaction.
Answer:
d) PO4^3-, HPO4^2-
Explanation:
Basically, an acid and a base which differs only by the presence or absence of proton (hydrogen ion) are called a conjugate acid-base pair.
a) HI, I
This is incorrect. For the acid, HI the conjugate base is I⁻ ion.
b) HCHO2, SO4^2-
This is incorrect, there's no relationship between both entities.
c) CO3^2-, HCI
This is incorrect, there's no relationship between both entities.
d) PO4^3-, HPO4^2-
This is correct. The difference between both entities is the Hydrogen ion. This is the conjugate acid-base pair
The initial temperature of the metal = 35 °C
<h3>Further explanation</h3>
Heat can be formulated :
Q = m . c . ΔT
Q = heat, J
c = specific heat, J/g C
ΔT = temperature, °C
m = 20 g
c = 5 J/(g°C)
Q = 500 J
T₁ = 40 C
the initial temperature :

In 1770 a Scottish physician and Chemist Daniel Rutherford performed a simple experiment with which he discovered nitrogen. Rutherford being with an empty bottle that he turned upside down in a pan of water so that the air was trapped. A buring candle was placed inside the bottle with the trapped air causing the water to rise a bit. The part of the air that seemed to "disappear" when the candle was bured was oxygen gas and the part of the air that did not "disappear" Ruthford discovered Nitrogen.