Answer:
The empirical formula is the simplest ratio of atoms while molecular is the actual formula.
Explanation:
Empirical Formula is the simplest ratio of atoms present in the compound.
The molecular formula shows the actual number of atoms present in the compound.
For example, CH is the empirical formula and C6H6 is the molecular formula of benzene.
i need help ls i thank its book 500 grams
Answer:
CH₂ ; 67.1 %
Explanation:
To determine the empirical formula we need to find what the mole ratio is in whole numbers of the atoms in the compound. To do that we will first need the atomic weights of C and H and then perform our calculation
Assume 100 grams of the compound.
# mol C = 85.7 g / 12.01 g/mol = 7.14 mol
# mol H = 14.3 g / 1.008 g/mol = 14.19 mol
The proportion is 14.9 mol H/ 7.14 mol C = 2 mol H/ 1 mol C
So the empirical formula is CH₂
For the second part we will need to first calculate the theoretical yield for the 12.03 g NaBH₄ reacted and then calculate the percent yield given the 0.295 g B₂H₆ produced.
We need to calculate the moles of NaBH₄ ( M.W = 37.83 g/mol )
1.203 g NaBH₄ / 37.83 g/mol = 0.0318 mol
Theoretical yield from balanced chemical equation:
0.0318 mol NaBH₄ x 1 mol B₂H₆ / mol NaBH₄ = 0.0159 mol B₂H₆
Theoretical mass yield B₂H₆ = 0.0159 mol x 27.66 g/ mol = 0.440 g
% yield = 0.295 g/ 0.440 g x 100 = 67.1 %
Answer:
10. Because they want to, and what they do is none of your buisness.
11. Firefighter-chemicals in fire-stopping have science.
Pharmacist-dealing with drugs and science was used to make them.
Chef-science involved in making food.-
Explanation:
Bruhh these were so easy do it yourself next time, it took me less than a minutte to do.
Answer:
7.81 moles
Explanation:
To solve this problem, let us generate an expression involving volume and number of mole of the gas since the pressure and temperature of the gas are constant.
From ideal gas equation:
PV = nRT
Divide both side by P
V= nRT/P
Divide both side by n
V/n = RT/P
Since RT/P are constant, then:
V1/n1 = V2/n2
Data obtained from the question include:
V1 = 4.11
n1 = 2.51 moles
V2 = 16.9L
n2 =?
Using the above equation i.e V1/n1 = V2/n2, the final number of the gas can be obtained as illustrated below:
4.11/2.51 = 16.9/n2
Cross multiply to express in linear form
4.11 x n2 = 2.51 x 16.9
Divide both side by 4.11
n2 = (2.51 x 16.9) / 4.11
n2 = 10.32moles
Now, to obtain the number of mole of the gas added, we'll subtract the initial mole from the final mole i.e
n2 — n1
Number of mole added = n2 — n1
10.32 — 2.51 = 7.81 moles
Therefore, 7.81 moles of the gas was added to the container