When the body is at rest, its speed is zero, and the graph lies on the x-axis.
When the body is in uniform motion, the speed is constant, and the graph is a horizontal line, parallel to the x-axis and some distance above it.
It's impossible to tell, based on the given information, how these two parts of the
graph are connected. There must be some sloping (accelerated) portion of the graph
that joins the two sections, but it cannot be accounted for in either the statement
that the body is at rest or that it is in uniform motion, since acceleration ... that is,
any change of speed or direction ... is not 'uniform' motion'.
The bacteria that doesn’t live in extreme conditions is Eubacteria
A. logic, would be your answer i believe!
I think option C is correct..hope it helps
Answer:
B. a piece of paper being torn
Explanation:
A chemical change is one that cannot be reversed. This means the original properties of the substance or object cannot be restored.
If you cook a raw egg, it would turn into a boiled egg (or a poached egg, however it is being cooked). The reaction is irreversible, so you cannot turn the cooked egg back into a raw egg - it is basically impossible to 'uncook' an already cooked egg.
When you toast a piece of bread, it turns into toast. You can't 'untoast' it back into bread. The chemical changes have already occurred and cannot be undone.
If you tear a piece of paper, it is still paper. You are only ripping it, not changing anything about it. You could simply tape the torn bit back to the original bit, or glue it - either way, it is still paper and nothing has occurred to drastically change the physical state of it.
Therefore, B is not a chemical change.