Answer:
l= 4 mi : width of the park
w= 1 mi : length of the park
Explanation:
Formula to find the area of the rectangle:
A= w*l Formula(1)
Where,
A is the area of the rectangle in mi²
w is the width of the rectangle in mi
l is the width of the rectangle in mi
Known data
A = 4 mi²
l = (w+3)mi Equation (1)
Problem development
We replace the data in the formula (1)
A= w*l
4 = w* (w+3)
4= w²+3w
w²+3w-4= 0
We factor the equation:
We look for two numbers whose sum is 3 and whose multiplication is -4
(w-1)(w+4) = 0 Equation (2)
The values of w for which the equation (2) is zero are:
w = 1 and w = -4
We take the positive value w = 1 because w is a dimension and cannot be negative.
w = 1 mi :width of the park
We replace w = 1 mi in the equation (1) to calculate the length of the park:
l= (w+3) mi
l= ( 1+3) mi
l= 4 mi
Answer:
a) x = 0.200 m
b)E = 3.84*10^{-4} N/C
Explanation:
DISTANCE BETWEEN BOTH POINT CHARGE = 0.5 m
by relation for electric field we have following relation
according to question E = 0
FROM FIGURE
x is the distance from left point charge where electric field is zero
solving for x we get
x = 0.200 m
b)electric field at half way mean x =0.25
E = 3.84*10^{-4} N/C
They make your muscles stronger and keep the bones, heart, and lungs in good condition. It implies that you have less chance of blood clotting and heart attack. one can balance his mood well and is likely to experience less stress in life.It also helps us to practice discipline.
Perpendicular means at 90 degree angle. so,
<span>Perpendicular parking spaces require turning at a 90 degree angle.
When you are going to park perpendicularly, you need a distance of 7 to 8 feet from the vehicle you are parking next to, and when you are parking parallel, you need 5 feet distance from the vehicle you are parking next to.</span>
Answer:Broadly speaking, all energy in the universe can be categorized as either potential energy or kinetic energy. Potential energy is the energy associated with position, like a ball held up in the air. When you let go of that ball and let it fall, the potential energy converts into kinetic energy, or the energy associated with motion.
EXAMPLES: There are five types of kinetic energy: radiant, thermal, sound, electrical and mechanical. Let's explore several kinetic energy examples to better illustrate these various forms.