By calculation, the diameter of the wire is 2.8 * 10^-3 m.
<h3>How do we obtain the length?</h3>
The following data are given in the question;
Mass of the wire = 1.0 g or 1 * 10^-3 Kg
Resistance = 0.5 ohm
Resistivity of copper = 1.7 * 10^-8 ohm meter
Density of copper = 8.92 * 10^3 Kg/m^3
V = m/d
But v = Al
Al = m/d
A = m/ld
Resistance = ρl/A
= ρl/m/ld =
l^2 = Rm/ρd
l = √ Rm/ρd
l = √0.5 * 1 * 10^-3 / 1.7 * 10^-8 * 8.92 * 10^3
l = 1.82 m
A = πr^2
Also;
A = m/ld
A = 1 * 10^-3 Kg / 1.82 m * 8.92 * 10^3 Kg/m^3
Area of the wire = 6.2 * 10^-5 m^2
r^2 = A/ π
r = √A/ π
r = √6.2 * 10^-5 m^2/3.142
r = 1.4 * 10^-3 m
Diameter = 2r = 2( 1.4 * 10^-3 m) = 2.8 * 10^-3 m
Learn more about resistivity:brainly.com/question/14547003
#SPJ4
Missing parts;
Suppose you wish to fabricate a uniform wire from 1.00g of copper. If the wire is to have a resistance of R=0.500Ω and all the copper is to be used, what must be (a) the length and (b) the diameter of this wire?
Answer:
The current in the circuit increases
Explanation:
The ohm's law states that the potential across a circuit is proportional to the current in the circuit.
V ∝ I
Where 'V' is the potential difference across the circuit and 'I' is the current in the circuit.
The proportionality constant present in the equation is the resistance of the circuit. Hence, the equation becomes
V = IR
According to the equation, when V is directly proportional to 'I' where 'R' remains as constant, then the change in 'V is brings change in 'I' to make the equation valid.
So, when there is an increase in the voltage, the current on the circuit increases.
In empty space probably means, there is no force on the ball.
(This assumption is not quite correct since there is still the force of gravity between the ball and the astronaut, but this force is very very small and can be neglected.)
Assuming there is no force on the ball, Newtown's 1st law says: When viewed in an internal frame of reference, an object either remains at rest or continues to move at a constant velocity, unless acted upon by a force.
This means:
If there is no force on the ball, there will be no acceleration on the ball either.
If the acceleration is zero, the velocity of the ball never changes.