Answer:
a
The radial acceleration is 
b
The horizontal Tension is 
The vertical Tension is 
Explanation:
The diagram illustrating this is shown on the first uploaded
From the question we are told that
The length of the string is 
The mass of the bob is 
The angle made by the string is 
The centripetal force acting on the bob is mathematically represented as

Now From the diagram we see that this force is equivalent to
where T is the tension on the rope and v is the linear velocity
So

Now the downward normal force acting on the bob is mathematically represented as

So

=> 
=> 
The centripetal acceleration which the same as the radial acceleration of the bob is mathematically represented as

=> 
substituting values


The horizontal component is mathematically represented as

substituting value

The vertical component of tension is

substituting value

The vector representation of the T in term is of the tension on the horizontal and the tension on the vertical is

substituting value
![T = [(0.3294) i + (3.3712)j ] \ N](https://tex.z-dn.net/?f=T%20%20%3D%20%5B%280.3294%29%20i%20%20%2B%20%283.3712%29j%20%5D%20%5C%20%20N)
The answer for this question is b because it says how far it goes before he begins to take brake
Answer:
The speed of the riders on the Singapore Flyer is approximately 0.262 m/s
Explanation:
The dimensions of the tallest Ferris wheel in the world are;
The diameter of the Ferris wheel, D = 150 m
The tine it takes the Ferris wheel to make a full circle, T = 30 minutes = 30 min × 60 s/min = 1,800 seconds
The angular velocity of the Ferris wheel, ω = 2·π/T
The linear velocity of the Ferris wheel, v = r·ω = The speed of the riders
Where;
r = The radius of the Ferris wheel = D/2
D = 150 m
∴ r = 150 m/2 = 75 m
∴ v = r·2·π/T
∴ v = 75 m × 2 × π/(1,800 s) ≈ 0.262 m/s
The speed of the riders on the Singapore Flyer, v ≈ 0.262 m/s