This is because Newton refined Galileo's idea of inertia and created it as his first law of motion. Galileo stated that it was the propensity of things to resist changes in motion. Newton refined it by including: "Every thing continues in a condition of rest or uniform speed in a straight line except acted on by a nonzero net power".
I believe the answer is D. <span>The hypothesis is revised and another experiment is conducted.</span>
An example would be 2 types of motion. It could be rectilinear or projectile motion. There are various equations for each type. Since you don't want me to tell you the answer, I could just express it in words. Then, it will be up to you to translate into mathematical equations.
For rectilinear motion, the distance traveled is equal to the initial velocity times the time, plus one-half of the acceleration times the square of the time. For projectile motion, the maximum distance is equal to the square of the initial velocity multiplied with the square of the sine of the launch angle, all over twice the gravity.
<span>The correct option is C. Energy cannot be created or destroyed. This statement is known as law of conservation of energy, and it implies that whenever a certain form of energy does change, the loss of this form of energy must have converted into an another type of energy. A typical example is an object falling to the ground: initially, the object has gravitational potential energy. As the object falls down, it loses potential energy (since its altitude from the grounf decreases), but it acquires kinetic energy (because its velocity increases). In this example, potential energy has converted into kinetic energy, but the total energy of the object has remained constant.</span>
Explanation:
Coefficient of kinetic friction is the resistive force that opposes the motion of a body as it moves and is in contact with another body.
It is found by dividing the frictional force by the normal force.
- Friction is a force that opposes motion.
- Static friction is for bodies that are not in motion
- Kinetic friction is for moving bodies.