Answer:
1.90×10²⁰ Electrons
Explanation:
From the question,
Q = It.................... Equation 1
Where Q = charge flowing through the wire, I = current, t = time
Given: I = 4.35 A, t = 7.00 s
Substitute these values into equation 1
Q = 4.35(7.00)
Q = 30.45 C.
But,
1 electron contains 1.6×10⁻¹⁹ C
therefore,
30.45 C = 30.45/1.6×10⁻¹⁹ electrons
= 1.90×10²⁰ Electrons
Answer:
Negative z-direction
Explanation:
First of all, we need to understand the direction of the magnetic force on the proton. This can be determined by using the right hand rule. So we have:
- index finger: direction of the proton, positive x-direction
- middle finger: direction of magnetic field, positive y-direction
- thumb: direction of the force, positive z-direction
In order to balance this magnetic force, the electric force must act in the opposite direction (negative z direction). Since for a proton (positive charge) the force and the electric field have same direction, it means that the electric field must also be in the negative z direction.
Nutrient pollution. I just took the quiz and got it right
Answer:
Q = 1.35*10⁻¹¹ C.
Explanation:
By definition, the capacitance of a capacitor, is the charge on one of the plates, divided by the potential difference between them, as follows:

At the same time, we can show (applying Gauss' Law to the surface of one of the plates), that the capacitance of a parallel-plate capacitor (with a dielectric of air), can be written as follows:
C = ε₀*A / d
Replacing by the values of A, and d, and taking into account that
ε₀ = 8.85*10⁻¹² F/m,
we get the value of the capacitance as follows:
C = 8.97*10⁻¹² F
As the voltage of an AA battery is 1.5 V, and is all applied to the capacitor, we can conclude that the charge on one of the plates is as follows:
Q = C* V = 8.97*10⁻¹² F* 1.5 V = 1.35*10⁻¹¹ C