1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
WITCHER [35]
3 years ago
15

18-A tire rotates at a constant 1.7 radians angle every 0.15 s. A) What is the tire's angular 2 points

Physics
1 answer:
aliya0001 [1]3 years ago
5 0

Explanation:

A) use the formula:

angular \: velocity = angular \: dispacement \div time

B) use the formula:

linear \: velocity = radius \times angular \: velocity

with angular velocity u calculated in A)

You might be interested in
When you look ahead while driving, it is best to:
vodka [1.7K]
I think its [B]
Personally i would say [B] only because If you are looking beyond the car in front of you..... then what if the car in front of you throws on breaks... you would hit them in the butt because you weren't paying attention to the car.
And majority of the time if your looking in the lanes beside you then you are most likely trying to get in that lane.
4 0
3 years ago
At each corner of a square of side l there are point charges of magnitude Q, 2Q, 3Q, and 4Q.What is the magnitude and direction
lbvjy [14]

Answer:

F_T=6k\frac{Q^2}{L}\hat{i}+10k\frac{Q^2}{L}\hat{j}=2k\frac{Q^2}{L}[3\hat{i}+5\hat{j}]

|F_T|=2\sqrt{34}k\frac{Q^2}{L}

\theta=tan^{-1}(\frac{5}{3})=59.03\°

Explanation:

I attached an image below with the scheme of the system:

The total force on the charge 2Q is the sum of the contribution of the forces between 2Q and the other charges:

F_T=F_Q+F_{3Q}+F_{4Q}\\\\F_T=k\frac{(Q)(2Q)}{R_1}\hat{i}+k\frac{(3Q)(2Q)}{R_2}\hat{j}+k\frac{(4Q)(2Q)}{R_3}[cos\theta \hat{i}+sin\theta \hat{j}]

the distances R1, R2 and R3, for a square arrangement is:

R1 = L

R2 = L

R3 = (√2)L

θ = 45°

F_T=k\frac{2Q^2}{L}\hat{i}+k\frac{6Q^2}{L}\hat{j}+k\frac{8Q^2}{\sqrt{2}L}[cos(45\°)\hat{i}+sin(45\°)\hat{j}]\\\\F_T=k\frac{2Q^2}{L}\hat{i}+k\frac{6Q^2}{L}\hat{j}+k\frac{8Q^2}{\sqrt{2}L}[\frac{\sqrt{2}}{2}\hat{i}+\frac{\sqrt{2}}{2}\hat{j}]\\\\F_T=6k\frac{Q^2}{L}\hat{i}+10k\frac{Q^2}{L}\hat{j}=2k\frac{Q^2}{L}[3\hat{i}+5\hat{j}]

and the magnitude is:

|F_T|=2k\frac{Q^2}{L}\sqrt{3^2+5^2}=2\sqrt{34}k\frac{Q^2}{L}

the direction is:

\theta=tan^{-1}(\frac{5}{3})=59.03\°

4 0
3 years ago
Desde una altura de 120 m se deja caer un cuerpo. Calcular a los 2,5 s i) la rapidez que lleva; ii) cuánto ha descendido; iii) c
stira [4]

Answer:

i) 24.5 m/s

ii) 30,656 m

iii) 89,344 m

Explanation:

Desde una altura de 120 m se deja caer un cuerpo. Calcule a 2.5 s i) la velocidad que toma; ii) cuánto ha disminuido; iii) cuánto queda por hacer

i) Los parámetros dados son;

Altura inicial, s = 120 m

El tiempo en caída libre = 2.5 s

De la ecuación de caída libre, tenemos;

v = u + gt

Dónde:

u = Velocidad inicial = 0 m / s

g = Aceleración debida a la gravedad = 9.81 m / s²

t = Tiempo de caída libre = 2.5 s

Por lo tanto;

v = 0 + 9.8 × 2.5 = 24.5 m / s

ii) El nivel que el cuerpo ha alcanzado en 2.5 segundos está dado por la relación

s = u · t + 1/2 · g · t²

= 0 × 2.5 + 1/2 × 9.81 × 2.5² = 30.656 m

iii) La altura restante = 120 - 30.656 = 89.344 m.

6 0
3 years ago
Consider a container of oxygen gas at a temperature of 23°C that is 1.00 m tall. Compare the gravitational potential energy of a
Sergio039 [100]

Answer:

Yes, it is reasonable to neglect it.

Explanation:

Hello,

In this case, a single molecule of oxygen weights 32 g (diatomic oxygen) thus, the mass of kilograms is (consider Avogadro's number):

m=1molec*\frac{1mol}{6.022x10^{23}molec} *\frac{32g}{1mol}*\frac{1kg}{1000g}=5.31x10^{-26}kg

After that, we compute the potential energy 1.00 m above the reference point:

U=mhg=5.31x10^{-26}kg*1.00m*9.8\frac{m}{s^2}=5.2x10^{-25}J

Then, we compute the average kinetic energy at the specified temperature:

K=\frac{3}{2}\frac{R}{Na}T

Whereas N_A stands for the Avogadro's number for which we have:

K=\frac{3}{2} \frac{8.314\frac{J}{mol*K}}{6.022x10^{23}/mol}*(23+273)K\\ \\K=6.13x10^{-21}J

In such a way, since the average kinetic energy energy is about 12000 times higher than the potential energy, it turns out reasonable to neglect the potential energy.

Regards.

8 0
4 years ago
a ball is thrown vertically upward with an initial speed of 40 m/s. how high is the ball above the ground when it stops
NISA [10]

Answer:

80m, assuming g=10m/s^2

Explanation:

40m/s will be reduced to 0m/s in 4 seconds. 4 seconds x 40m/s would be 160m up, but you will only get half of that because you decelerate linearly to 0m/s. This leaves you with 4 x 20 = 80m.

5 0
3 years ago
Read 2 more answers
Other questions:
  • Astronomers determine that a certain square region in interstellar space has an area of approximately 2.4 \times 10^72.4×10 ​7 ​
    7·1 answer
  • A speck of dust with mass 12 mg and electric charge 10 μC is released from rest in a uniform electric field of magnitude 850 N/C
    10·1 answer
  • Name at least 4 other gases in the atmosphere besides oxygen and nitrogen
    13·2 answers
  • Solvents are the substances that dissolve solutes; therefore, solvents are always liquids.
    14·1 answer
  • A satellite in geostationary orbit is used to transmit data via electromagnetic radiation. The satellite is at a height of 35,00
    15·1 answer
  • Photons are also known as beta particles. (true or false)
    7·1 answer
  • A 36,287 kg truck has a momentum of 907,175 kg • . What is the truck’s velocity
    15·2 answers
  • If we made a model with our solar system the size of an Oreo cookie, what would be the largest object that would fit inside your
    11·1 answer
  • Example of third class Lever first class Lever and second class Lever​
    5·2 answers
  • The CEO, ellen misk, left her martian office but accidentally left a cylindricall can of coke (3.1 inches in diameter, 5.42 inch
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!