The, it's electron goes for HIGHER orbital form lower orbital
Answer:
The magnitude of a uniform electric field that will stop these protons in a distance of 2 m is 1.01 x
N/C
Explanation:
given information,
kinetic energy, KE = 3.25 x
J
proton's mass, m = 1.673 x
kg
charge, q = 1.602 x
C
distance, d = 2 m
to find the electric field that will stop the proton, we can use the following equation:
E = F/q
= (KE/d) / q , KE = Fd --> F = KE/d
= KE/qd
= (3.25 x
J) / (1.602 x
C)(2 m)
= 1.01 x
N/C
Answer:
A Chemical Reaction towards Oxygen, Water, and the Chemical Color.
Answer:
10 m/s
Explanation:
Use the kinetic energy formula:
KE=(1/2)mv^2
I always remember it as Kevin is half-mad, and very square.
25J = (1/2)*0.5kg*(v^2)
50J = 0.5kg*(v^2)
100J = v^2
v = 10 m/s
Check it:
KE = (1/2)*0.5*(10^2)
KE = 25J
yep, it's right!
Answer:
1.02 seconds
Explanation:
Initial velocity = u = 5 m/s
t = Time taken
s = Displacement travelled = 0
a = Acceleration due to gravity = -9.81 m/s² (negative sign due to direction)
Equation of motion

So, time taken to return to its initial position is 1.02 seconds