If the force and the motion are along the same direction (like it is here) then work is force*distance. The time doesn't come into play until you want the power used. So here
W=9.0*3.0=27J
Answer:
d = 68.5 x 10⁻⁶ m = 68.5 μm
Explanation:
The complete question is as follows:
An optical engineer needs to ensure that the bright fringes from a double-slit are 15.7 mm apart on a detector that is 1.70m from the slits. If the slits are illuminated with coherent light of wavelength 633 nm, how far apart should the slits be?
The answer can be given by using the formula derived from Young's Double Slit Experiment:

where,
d = slit separation = ?
λ = wavelength = 633 nm = 6.33 x 10⁻⁷ m
L = distance from screen (detector) = 1.7 m
y = distance between bright fringes = 15.7 mm = 0.0157 m
Therefore,

<u>d = 68.5 x 10⁻⁶ m = 68.5 μm</u>
Answer:
The correct answer is A. The sun is the energy source of the surface currents in the ocean
The Avogadro’s number is used to represent the number of elementary entities that exist in one mole of a compound.
<h3>What is the Avogadro’s number?</h3>
The Avogadro’s number is used to represent the number of elementary entities that exist in one mole of a compound. The numerical value of the Avogadro’s number is obtained as 6.02 x 10^23 and consists of the atoms, molecules and ions in the compound.
The scientist Josef Loschmidt strengthened the Avogadro’s number by obtaining the number of particles in one cubic centimeter of gas under standard conditions.
Learn more about Avogadro's number:brainly.com/question/11907018
#SPJ1
Answer: a) 0.315 (V/L)
Explanation:
From Conservation of angular momentum, we know that
L1 = L2 ,
Therefore MV L/2 = ( Irod + Ib) x W
M/4 x V x L/2 = (M (L/2)^2 + 1/3xMxL^2) x W
M/8 X VL = (ML^2/16 + ML^2 /3 )
After elimination we have,
V/8 = 19/48 x L x W
W = 48/8 x V/19L = 6/19 x V/L
Therefore W = (0.136)X V/L