Answer:
The image distance from right lens is 2.86 cm and image is real.
Explanation:
Given that,
Focal length of left lens = 10 cm
Focal length of right lens = 5 cm
Distance between the lenses d= 15 cm
Object distance = 50 cm
We need to calculate the image distance from left lens
Using formula of lens

Put the value into the formula



We need to calculate the image distance from right lens
The object distance will be

Using formula of lens

Put the value into the formula



The image is real.
Hence, The image distance from right lens is 2.86 cm and image is real.
The distance in meters she would have moved before she begins to slow down is 11.25 m
<h3>
LINEAR MOTION</h3>
A straight line movement is known as linear motion
Given that Ann is driving down a street at 15 m/s. Suddenly a child runs into the street. It takes Ann 0.75 seconds to react and apply the brakes.
To know how many meters will she have moved before she begins to slow down, we need to first list all the given parameters.
From definition of speed,
speed = distance / time
Make distance the subject of the formula
distance = speed x time
distance = 15 x 0.75
distance = 11.25m
Therefore, the distance in meters she would have moved before she begins to slow down is 11.25 m
Learn more about Linear motion here: brainly.com/question/13665920
The correct answer would be the first option. The process that would need more energy would be vaporizing 1 kg of saturated liquid water at a pressure of 1 atmosphere. This can be seen from the latent heat of vaporization of each system. For the saturated water at 1 atm, the latent heat is equal to 40.7 kJ per mole while, at 8 atm, the latent heat is equal to 36.4 kJ per mole. The latent heat of vaporization is the amount of heat needed in order to vaporize a specific amount of substance without any change in the temperature. As we can observe, more energy is needed by the liquid water at 1 atm.
That's efficiency. There's no law that it must be stated in percent.