Answer:
The car C has KE = 100, PE = 0
Explanation:
The principle of conservation of energy states that although energy can be transformed from one form to another, the total energy of the given system remains unchanged.
The energy that a body possesses due to its motion or position is known as mechanical energy. There are two kinds of mechanical energy: kinetic energy, KE and potential energy, PE.
Kinetic energy is the energy that a body possesses due to its motion.
Potential energy is the energy a body possesses due to its position.
From the principle of conservation of energy, kinetic energy can be transformed into potential energy and vice versa, but in all cases the energy is conserved or constant.
In the diagram above, the cars at various positions of rest or motion are transforming the various forms of mechanical energy, but the total energy is conserved at every point. At the point A, energy is all potential, at B, it is partly potential partly kinetic energy, However, at the point C, all the potential energy has been converted to kinetic energy. At D, some of the kinetic energy has been converted to potential energy as the car climbs up the hill.
Therefore, the car C has KE = 100, PE = 0
Answer:
2.03 Ω
Explanation:
EMF: This can be defined as the potential difference of a cell when it is not delivering any current. The S.I unit of Emf is Volt.
The formula of emf is given as,
E = I(R+r)............................ Equation 1
Where E = Emf, I = current, R = External resistance, r = internal resistance.
Make r the subject of the equation
r = (E-IR)/I........................ Equation 2
Note: From ohm's law, V = IR.
r = (E-V)/I........................ Equation 3
Where V = Terminal voltage
Given: E = 24 V, I = 3.9 A, V = 16.1 V.
Substitute into equation 3
r = (24-16.1)/3.9
r = 7.9/3.9
r = 2.03 Ω
Answer:
A
Explanation:
E. An ocean wave moving through water is an example of a mechanical wave
e.g sound waves wave on a rope or string
and Ans a is also correct
Explanation:
initial velocity(u) = 90 km/s = 25 m/s
time (t) = 5 sec
mass (m) = 200 kg
final velocity (v) = 0 m/s
v = u + at
0 = 25 + a * 5
-25 = 5 a
-5 = a
Therefore acceleration = -5m/s²
Force = mass * acceleration
F = 200*-5
F = -1000 N
Answer:
1838216 J
Explanation:
95 km/h = 26.39 m/s
40 km/h = 11.11 m/s
Initial kinetic energy
= .5 x 1600 x(26.39)²
= 557145.67 J
Final kinetic energy
= .5 x 1600 x ( 11.11)²
= 98745.68 J
Loss of kinetic energy
= 458400 J
Loss of potential energy
= mg x loss of height
= 1600 x 9.8 x 340 sin 15
= 1379816 J
Sum of Loss of potential energy and Loss of kinetic energy
= 1379816 + 458400
= 1838216 J
This is the work done by the friction . So this is heat generated.