Answer:
The horse is going at 12.72 m/s speed.
Explanation:
The initial speed of the horse (u) = 3 m/s
The acceleration of the horse (a)= 5 m/
The displacement( it is assumed it is moving in a straight line)(s)= 15.3 m
Applying the second equation of motion to find out the time,



Solving this quadratic equation, we get time(t)=1.945 s, the other negative time is neglected.
Now applying first equation of motion, to find out the final velocity,



v=12.72 m/s
The horse travels at a speed of 12.72 m/s after covering the given distance.
The car's speed was zero at the beginning of the 12 seconds,
and 18 m/s at the end of it. Since the acceleration was 'uniform'
during that time, the car's average speed was (1/2)(0 + 18) = 9 m/s.
12 seconds at an average speed of 9 m/s ==> (12 x 9) = 108 meters .
==========================================
That's the way I like to brain it out. If you prefer to use the formula,
the first problem you run into is: You need to remember the formula !
The formula is D = 1/2 a T²
Distance = (1/2 acceleration) x (time in seconds)²
Acceleration = (change in speed) / (time for the change)
= (18 m/s) / (12 sec)
= 1.5 m/s² .
Distance = (1/2 x 1.5 m/s²) x (12 sec)²
= (0.75 m/s²) x (144 sec²) = 108 meters .
1. Is 49.5
2. Is 8.6
4. Is 6.6
Wait I’m not sure
Answer:
Potential energy is 
Explanation:
The potential energy depends on the mass, the acceleration of gravity g and the height at which the object or person is.
Potential energy 
In this case we would need to know the exact mass of the hiker in order to calculate the potential energy.
But we know the values of g and h


So, the potential energy

m is the mass of the hiker, wich is not in the description of the problem.
I think the answer is letter B