Refraction. ... Diffraction. ... EM spectrum. ... Intensity. ... Transverse wave. ... Frequency. ... Compression wave.
To solve this problem we will apply the concepts related to the Electrostatic Force given by Coulomb's law. This force can be mathematically described as

Here
k = Coulomb's Constant
Charge of each object
d = Distance
Our values are given as,


d = 1 m
a) The electric force on charge
is


Force is positive i.e. repulsive
b) As the force exerted on
will be equal to that act on
,


Force is positive i.e. repulsive
c) If
, a negative sign will be introduced into the expression above i.e.


Force is negative i.e. attractive
Answer:
conservative
Explanation:
Nonconservative force is the force that depends on a path, however conservative does not depend on a path and it is not associated with the potential energy. When the work is done by an unconservative force, mechanical energy is added or removed. Friction is the best example for a non-conservative force. When these non-conservative forces are acting, the mechanical energy changes but these are not preserved.
hope this helped!
(physics: really?)
It's 0.125 cm or 1.25 mm. Divide 1cm (or 10mm) by 8.