<span>The gravity pulls itself into a sphere also known as </span><span><span>hydrostatic equilibrium. This gives the planet a sphere-like shape.
Hope that helps. -UF aka Nadia</span> </span>
<u>Answer:</u>
I think its
<em>10 kg</em>
plzz plzz plzz. mark as brainliest
Answer:
x = 129.9 m
y = 30.9 m
Explanation:
When an object is thrown into the air under the effect of the gravitational force, the movement of the projectile is observed. Then it can be considered as two separate motions, horizontal motion and vertical motion. Both motions are different, so that they can be handled independently.
Given data:
= 50 m/s
Angle = 30°
Time = t = 3 s
horizontal component of velocity =
=
cos30°
= 50cos30°
= 43.3 m/s
Vertical component of velocity =
=
Sin30°
= 50Sin30°
= 25 m/s
This is a projectile motion, and we know that in projectile motion the horizontal component of the velocity remain constant throughout his motion. So there is no acceleration along horizontal path.
But the vertical component of velocity varies with time and there is an acceleration along vertical direction which is equal to gravitational acceleration g.
Horizontal distance = x =
t
x = 43.3*3
x = 129.9 m
Vertical Distance = y =
t -0.5gt²
y = 25*3 - 0.5*9.8*3²
y = 75 - 44.1
y = 30.9 m
It would be hard so many factors play a role in this angle kinetic potential energy gravity positioning height weight etc.to keep something as described moving as long as possible you'd have to build it heavily enough to balance out the momentum at each climax of the swing to balance with the gravitational pull of the earth core.I'd use a material such as copper for the variable.Also the weight distribution on the variables base plays a role.Take all the into account and experiment for a while!maybe one day you could find the right proportions in every role for kinetic potential gravitational momentum and weight to keep it going forever. As said alotta factors play a huge role in this experiment <span />
Is there any chemical names listed ?