Explanation:
Given that,
Bill is riding his bicycle at 5 m/s eastward: and Carlos is driving his car at 15 m/s westward.
Taking eastward as positive direction, we have:
is the velocity of Bill with respect to Amy (which is stationary)
is the velocity of Carlos with respect to Amy.
Bill is moving 5 m/s eastward compared to Amy at rest, so the velocity of Bill's reference frame is

Therefore, Carlos velocity in Bill's reference frame will be

So, the magnitude is 20 m/s and the direction is westward (negative sign).
The acceleration due to gravity of Mars is 
<u>Explanation:</u>
As per universal law of gravity, the gravitational force is directly proportional to the product of masses and inversely proportional to the square of the distance between them. But in the present case, the gravity need to be determined between Mars and the object on Mars. Since the mass of Mars is greater than the mass of any object. Thus,

Here, G is the gravitational constant, R is the radius of Mars and M, m is the mass of Mars and the object respectively..
Also, according to Newton’s second law of motion, the acceleration of any object will be equal to the ratio of force exerted on it to the mass of the object.
So in order to determine the acceleration due to gravity of Mars, divide the gravitational force of Mars by mass of object on the surface of Mars.




The answer should be B - lasts longer.
Answer:
By Applying pressure to the brakes
Explanation:
Driving cars through deep water that is more than 10cm can make the cars to float. Most modern cars are usually water- tight so they can start to float through water that is about 30cm deep, fast moving water is very powerful so one needs to be very careful when driving.
If the brakes are wet test them by pressing or tapping on them gently.
You can as well dry brakes by driving in low gear and applying pressure to the brakes.
Answer:
The source of cosmic background radiation filled the entire universe.
Explanation:
D:The source of cosmic background radiation filled the entire universe.