Answer: 15 cm
Explanation:
According to the Lens Equation we have the following:
(1)
Where:
is the focal length
is the distance between the candle (the object) and the lens
is the distance between the image and the lens
Isolating
:
(2)
Solving:
(3)
Finally:
This is where the image is located
F~1/r²
doubling the distance r, Decreases the force by ¼
I'd say A. because an inference is a guess/estimate. You can assume that the egg rolled off the kitchen but you know that C and D are true.
Answer:

Explanation:
Given that:
- magnetic field intensity,

- kinetic energy of electron,

- we have mass of electron,

<em>Now, form the mathematical expression of Kinetic Energy:</em>




<u>from the relation of magnetic and centripetal forces we have the radius as:</u>



Answer:
E. Kepler's second law says the planet must move fastest when it is closest, not when it is farthest away.
Explanation:
We can answer this question by using Kepler's second law of planetary motion, which states that:
"A line connecting the center of the Sun with the center of each planet sweeps out equal areas in equal intervals of time"
This means that when a planet is further away from the Sun, it will move slower (because the line is longer, so it must move slower), while when the planet is closer to the Sun, it will move faster (because the line is shorter, so it must move faster).
In the text of this problem, it is written that the planet moves at 31 km/s when is close to the star and 35 km/s when it is farthest: this is in disagreement with what we said above, therefore the correct option is
E. Kepler's second law says the planet must move fastest when it is closest, not when it is farthest away.